Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Downregulation of lipopolysaccharide response in drosophila by negative crosstalk between the AP1 and NF-κB signaling modules

Abstract

IκB kinase (IKK) and Jun N-terminal kinase (Jnk) signaling modules are important in the synthesis of immune effector molecules during innate immune responses against lipopolysaccharide and peptidoglycan. However, the regulatory mechanisms required for specificity and termination of these immune responses are unclear. We show here that crosstalk occurred between the drosophila Jnk and IKK pathways, which led to downregulation of each other's activity. The inhibitory action of Jnk was mediated by binding of drosophila activator protein 1 (AP1) to promoters activated by the transcription factor NF-κB. This binding led to recruitment of the histone deacetylase dHDAC1 to the promoter of the gene encoding the antibacterial protein Attacin-A and to local modification of histone acetylation content. Thus, AP1 acts as a repressor by recruiting the deacetylase complex to terminate activation of a group of NF-κB target genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Downregulation of NF-κB signaling by Jnk in response to LPS.
Figure 2: Requirement of bsk for AttA and puc transcription.
Figure 3: The AP1 complex is involved in negative regulation of NF-κB-dependent genes.
Figure 4: dAP1 binds to the proximal sequence of the AttA promoter in vitro.
Figure 5: Binding of dAP1 to the proximal region of the AttA promoter recruits dHDAC1.
Figure 6: dAP1-mediated dHDAC1 recruitment to the AttA promoter.
Figure 7: Specificity of dAP1-mediated downregulation of the NF-κB target promoter.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Kimbrell, D.A. & Beutler, B. The evolution and genetics of innate immunity. Nat. Rev. Genet. 2, 256–267 (2001).

    Article  CAS  Google Scholar 

  2. Hoffmann, J.A. The immune response of Drosophila. Nature 426, 33–38 (2003).

    Article  CAS  Google Scholar 

  3. Tzou, P., De Gregorio, E. & Lemaitre, B. How Drosophila combats microbial infection: a model to study innate immunity and host-pathogen interactions. Curr. Opin. Microbiol. 5, 102–110 (2002).

    Article  CAS  Google Scholar 

  4. Medzhitov, R. & Janeway, C.A., Jr. Innate immunity. N. Engl. J. Med. 343, 338–344 (2000).

    Article  CAS  Google Scholar 

  5. Janeway, C.A., Jr. & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    Article  CAS  Google Scholar 

  6. Brennan, C.A. & Anderson, K.V. Drosophila: the genetics of innate immune recognition and response. Annu. Rev. Immunol. 22, 457–483 (2004).

    Article  CAS  Google Scholar 

  7. Stronach, B.E. & Perrimon, N. Stress signaling in Drosophila. Oncogene 18, 6172–6182 (1999).

    Article  CAS  Google Scholar 

  8. Boutros, M., Agaisse, H. & Perrimon, N. Sequential activation of signaling pathways during innate immune responses in Drosophila. Dev. Cell 3, 711–722 (2002).

    Article  CAS  Google Scholar 

  9. Hoffmann, J.A. & Reichhart, J.M. Drosophila innate immunity: an evolutionary perspective. Nat. Immunol. 3, 121–126 (2002).

    Article  CAS  Google Scholar 

  10. Hultmark, D. Drosophila immunity: paths and patterns. Curr. Opin. Immunol. 15, 12–19 (2003).

    Article  CAS  Google Scholar 

  11. Wasserman, S.A. A conserved signal transduction pathway regulating the activity of the rel-like proteins dorsal and NF-κB. Mol. Biol. Cell 4, 767–771 (1993).

    Article  CAS  Google Scholar 

  12. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.M. & Hoffmann, J.A. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983 (1996).

    Article  CAS  Google Scholar 

  13. Meng, X., Khanuja, B.S. & Ip, Y.T. Toll receptor-mediated Drosophila immune response requires Dif, an NF-κB factor. Genes Dev. 13, 792–797 (1999).

    Article  CAS  Google Scholar 

  14. Wasserman, S.A. Toll signaling: the enigma variations. Curr. Opin. Genet. Dev. 10, 497–502 (2000).

    Article  CAS  Google Scholar 

  15. Levashina, E.A. et al. Constitutive activation of toll-mediated antifungal defense in serpin-deficient Drosophila. Science 285, 1917–1919 (1999).

    Article  CAS  Google Scholar 

  16. Weber, A.N. et al. Binding of the Drosophila cytokine Spatzle to Toll is direct and establishes signaling. Nat. Immunol. 4, 794–800 (2003).

    Article  CAS  Google Scholar 

  17. Ip, Y.T. et al. Dif, a dorsal-related gene that mediates an immune response in Drosophila. Cell 75, 753–763 (1993).

    CAS  Google Scholar 

  18. Tauszig-Delamasure, S., Bilak, H., Capovilla, M., Hoffmann, J.A. & Imler, J.L. Drosophila MyD88 is required for the response to fungal and Gram-positive bacterial infections. Nat. Immunol. 3, 91–97 (2002).

    Article  CAS  Google Scholar 

  19. Nicolas, E., Reichhart, J.M., Hoffmann, J.A. & Lemaitre, B. In vivo regulation of the IκB homologue cactus during the immune response of Drosophila. J. Biol. Chem. 273, 10463–10469 (1998).

    Article  CAS  Google Scholar 

  20. Imler, J.L. & Hoffmann, J.A. Toll receptors in Drosophila: a family of molecules regulating development and immunity. Curr. Top. Microbiol. Immunol. 270, 63–79 (2002).

    CAS  PubMed  Google Scholar 

  21. Kaneko, T. et al. Monomeric and polymeric gram-negative peptidoglycan but not purified LPS stimulate the Drosophila Imd pathway. Immunity 20, 637–649 (2004).

    Article  CAS  Google Scholar 

  22. Leulier, F. et al. The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nat. Immunol. 4, 478–484 (2003).

    Article  CAS  Google Scholar 

  23. De Gregorio, E., Spellman, P.T., Tzou, P., Rubin, G.M. & Lemaitre, B. The Toll and Imd pathways are the major regulators of the immune response in Drosophila. EMBO J. 21, 2568–2579 (2002).

    Article  CAS  Google Scholar 

  24. Georgel, P. et al. Drosophila immune deficiency (Imd) is a death domain protein that activates antibacterial defense and can promote apoptosis. Dev. Cell 1, 503–514 (2001).

    Article  CAS  Google Scholar 

  25. Onfelt Tingvall, T., Roos, E. & Engstrom, Y. The imd gene is required for local Cecropin expression in Drosophila barrier epithelia. EMBO Rep. 2, 239–243 (2001).

    Article  CAS  Google Scholar 

  26. Lemaitre, B. et al. A recessive mutation, immune deficiency (imd), defines two distinct control pathways in the Drosophila host defense. Proc. Natl. Acad. Sci. USA 92, 9465–9469 (1995).

    Article  CAS  Google Scholar 

  27. Choe, K.M., Werner, T., Stoven, S., Hultmark, D. & Anderson, K.V. Requirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila. Science 296, 359–362 (2002).

    Article  CAS  Google Scholar 

  28. Gottar, M. et al. The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature 416, 640–644 (2002).

    Article  CAS  Google Scholar 

  29. Vidal, S. et al. Mutations in the Drosophila dTAK1 gene reveal a conserved function for MAPKKKs in the control of rel/NF-κB-dependent innate immune responses. Genes Dev. 15, 1900–1912 (2001).

    Article  CAS  Google Scholar 

  30. Rutschmann, S. et al. Role of Drosophila IKKγ in a Toll-independent antibacterial immune response. Nat. Immunol. 1, 342–347 (2000).

    Article  CAS  Google Scholar 

  31. Lu, Y., Wu, L.P. & Anderson, K.V. The antibacterial arm of the Drosophila innate immune response requires an IκB kinase. Genes Dev. 15, 104–110 (2001).

    Article  CAS  Google Scholar 

  32. Silverman, N. et al. A Drosophila IκB kinase complex required for Relish cleavage and antibacterial immunity. Genes Dev. 14, 2461–2471 (2000).

    Article  CAS  Google Scholar 

  33. Stoven, S. et al. Caspase-mediated processing of the Drosophila NF-κB factor Relish. Proc. Natl. Acad. Sci. USA 100, 5991–5996 (2003).

    Article  CAS  Google Scholar 

  34. Silverman, N. et al. Immune activation of NF-κB and JNK requires Drosophila TAK1. J. Biol. Chem. 278, 48928–48934 (2003).

    Article  CAS  Google Scholar 

  35. Stronach, B. & Perrimon, N. Activation of the JNK pathway during dorsal closure in Drosophila requires the mixed lineage kinase, slipper. Genes Dev. 16, 377–387 (2002).

    Article  CAS  Google Scholar 

  36. Goberdhan, D.C. & Wilson, C. JNK, cytoskeletal regulator and stress response kinase? A Drosophila perspective. Bioessays 20, 1009–1019 (1998).

    Article  CAS  Google Scholar 

  37. Tang, G. et al. Inhibition of JNK activation through NF-κB target genes. Nature 414, 313–317 (2001).

    Article  CAS  Google Scholar 

  38. De Smaele, E. et al. Induction of gadd45β by NF-κB downregulates pro-apoptotic JNK signalling. Nature 414, 308–313 (2001).

    Article  CAS  Google Scholar 

  39. Park, J.M. et al. Targeting of TAK1 by the NF-κB protein Relish regulates the JNK-mediated immune response in Drosophila. Genes Dev. 18, 584–594 (2004).

    Article  CAS  Google Scholar 

  40. Boutros, M. et al. Genome-wide RNAi analysis of growth and viability in Drosophila cells. Science 303, 832–835 (2004).

    Article  CAS  Google Scholar 

  41. Ciapponi, L. & Bohmann, D. An essential function of AP-1 heterodimers in Drosophila development. Mech. Dev. 115, 35–40 (2002).

    Article  CAS  Google Scholar 

  42. Uvell, H. & Engstrom, Y. Functional characterization of a novel promoter element required for an innate immune response in Drosophila. Mol. Cell. Biol. 23, 8272–8281 (2003).

    Article  CAS  Google Scholar 

  43. Dushay, M.S. et al. Two attacin antibacterial genes of Drosophila melanogaster. Gene 246, 49–57 (2000).

    Article  CAS  Google Scholar 

  44. Smith, E.R. et al. Cloning of Drosophila GCN5: conserved features among metazoan GCN5 family members. Nucleic Acids Res. 26, 2948–2954 (1998).

    Article  CAS  Google Scholar 

  45. Huang, X. & Kadonaga, J.T. Biochemical analysis of transcriptional repression by Drosophila histone deacetylase 1. J. Biol. Chem. 276, 12497–12500 (2001).

    Article  CAS  Google Scholar 

  46. Kim, T.W. et al. MED16 and MED23 of Mediator are coactivators of lipopolysaccharide- and heat-shock-induced transcriptional activators. Proc. Natl. Acad. Sci. USA 101, 12153–12158 (2004).

    Article  CAS  Google Scholar 

  47. Ventura, J.J., Kennedy, N.J., Flavell, R.A. & Davis, R.J. JNK regulates autocrine expression of TGF-β1. Mol. Cell 15, 269–278 (2004).

    Article  CAS  Google Scholar 

  48. Weiss, C. et al. JNK phosphorylation relieves HDAC3-dependent suppression of the transcriptional activity of c-Jun. EMBO J. 22, 3686–3695 (2003).

    Article  CAS  Google Scholar 

  49. Barlev, A.N. et al. Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases. Mol. Cell 8, 1243–1254 (2001).

    Article  CAS  Google Scholar 

  50. Chen, L.-F. & Greene, C.W. Regulation of distinct biological activities of the NF-κB transcription factor complex by acetylation. J. Mol. Med. 81, 549–557 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W.J. Lee (Ewha Womans University, Seoul, Korea) for providing immunocompetent SL2 cells; J.L. Imler (Institute de Biologie Moleculaire et Cellulaire, Strasbourg, France) for providing reporter plasmids; and J.M. Park (University of California at San Diego) for helpful advice. BRB-ArrayTools v3.X developed by R. Simon (National Cancer Institutes of Health, Bethesda, Maryland) and A. Peng Lam (EMMES, Rockville, Maryland) were used for microarray analyses. Supported by the Creative Research Initiatives Program of the Korean Ministry of Science and Technology (Y.-J.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Joon Kim.

Ethics declarations

Competing interests

Y.H. Song, S.N. Kim and J.H. Yoon are employed by Digital Genomics.

Supplementary information

Supplementary Fig. 1

Anti-MED20 specifically recognized drosophila MED20. (PDF 159 kb)

Supplementary Table 1

DNA chip analysis of LPS response if SL2 cells and the effect of cyclohexamide on LPS induction. (PDF 97 kb)

Supplementary Table 2

Expression profile defects of the LPS induced genes in the imd-, bsk- and Rel-RNAi treated cells. (PDF 119 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, T., Yoon, J., Cho, H. et al. Downregulation of lipopolysaccharide response in drosophila by negative crosstalk between the AP1 and NF-κB signaling modules. Nat Immunol 6, 211–218 (2005). https://doi.org/10.1038/ni1159

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1159

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing