Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Role of atmospheric chemistry in the climate impacts of stratospheric volcanic injections

Abstract

The climate impact of a volcanic eruption is known to be dependent on the size, location and timing of the eruption. However, the chemistry and composition of the volcanic plume also control its impact on climate. It is not just sulfur dioxide gas, but also the coincident emissions of water, halogens and ash that influence the radiative and climate forcing of an eruption. Improvements in the capability of models to capture aerosol microphysics, and the inclusion of chemistry and aerosol microphysics modules in Earth system models, allow us to evaluate the interaction of composition and chemistry within volcanic plumes in a new way. These modelling efforts also illustrate the role of water vapour in controlling the chemical evolution — and hence climate impacts — of the plume. A growing realization of the importance of the chemical composition of volcanic plumes is leading to a more sophisticated and realistic representation of volcanic forcing in climate simulations, which in turn aids in reconciling simulations and proxy reconstructions of the climate impacts of past volcanic eruptions. More sophisticated simulations are expected to help, eventually, with predictions of the impact on the Earth system of any future large volcanic eruptions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Volcanic water in the stratosphere alters aerosol evolution.
Figure 2: Evolution of stratospheric global-mean aerosol optical depth following a volcanic eruption.

Similar content being viewed by others

References

  1. Franklin, B. Meteorological imaginations and conjectures. Mem. Lit. Phil. Soc. Manchester 2, 357–361 (1785).

    Google Scholar 

  2. Humphreys, W. J. Physics of the Air (McGraw-Hill, 1940).

    Google Scholar 

  3. Budyko, M. I. The effect of solar radiation variations on the climate of the Earth. Tellus 21, 611–619 (1969).

    Article  Google Scholar 

  4. Pollack, J. B. et al. Volcanic explosions and climatic change: a theoretical assessment. J. Geophys. Res. 81, 1071–1083 (1976).

    Article  Google Scholar 

  5. Rampino, M. R. & Self, S. Sulphur-rich volcanic eruptions and stratospheric aerosols. Nature 310, 677–679 (1984).

    Article  Google Scholar 

  6. Stenchikov, G. L. et al. Radiative forcing from the 1991 Mount Pinatubo volcanic eruption. J. Geophys. Res. 103, 13837 (1998).

    Article  Google Scholar 

  7. Krueger, A. J. et al. Volcanic sulfur dioxide measurements from the total ozone mapping spectrometer instruments. J. Geophys. Res. 100, 14057–14076 (1995).

    Article  Google Scholar 

  8. Sato, M., Hansen, J. E., McCormick, M. P. & Pollack, J. B. Stratospheric aerosol optical depths, 1850–1990. J. Geophys. Res. 98, 22987–22994 (1993).

    Article  Google Scholar 

  9. Carn, S. A., Clarisse, L. & Prata, A. J. Multi-decadal satellite measurements of global volcanic degassing. J. Volcanol. Geotherm. Res. 311, 99–134 (2016).

    Article  Google Scholar 

  10. Hansen, J. et al. In The Mount Pinatubo Eruption: Effects on the Atmosphere and Climate NATO ASI Series, Vol. I 42 (eds Fiocco, G., Fua, D. & Visconti, G.) 233–272 (Springer, 1996).

    Book  Google Scholar 

  11. Winter, A. et al. Persistent drying in the tropics linked to natural forcing. Nature Commun. 6, 7627 (2015).

    Article  Google Scholar 

  12. Shindell, D. T., Schmidt, G. A., Mann, M. E. & Faluvegi, G. Dynamic winter climate response to large tropical volcanic eruptions since 1600. J. Geophys. Res. 109, D05104 (2004).

    Article  Google Scholar 

  13. Robock, A. Volcanic eruptions and climate. Rev. Geophys. 38, 191–219 (2000).

    Article  Google Scholar 

  14. Wahl, E., Diaz, H. F., Smerdon, J. & Ammann, C. Late winter temperature response to large tropical volcanic eruptions in temperate western North America: relationship to ENSO phases. Glob. Planet. Change 122, 238–250 (2014).

    Article  Google Scholar 

  15. Pausata, F. S. R., Chafik, L., Caballero, R. & Battisti, D. S. Impacts of high-latitude volcanic eruptions on ENSO and AMOC. Proc. Natl Acad. Sci. USA, http://dx.doi.org/10.1073/pnas.1509153112 (2015).

  16. Coffey, M. T. Observations of the impact of volcanic activity on stratospheric chemistry. J. Geophys. Res. 101, 6767–6780 (1996).

    Article  Google Scholar 

  17. Turco, R. P., Whitten, R. C. & Toon, O. B. Stratospheric aerosols: observation and theory. Rev. Geophys. Space Phys. 20, 233–279 (1982).

    Article  Google Scholar 

  18. Rampino, M. R. & Self, S. Volcanic winter and accelerated glaciation following the Toba super-eruption. Nature 359, 50–52 (1992).

    Article  Google Scholar 

  19. Bekki, S. Oxidation of volcanic SO2: a sink for stratospheric OH and H2O. Geophys. Res. Lett. 22, 913–916 (1995).

    Article  Google Scholar 

  20. Oppenheimer, C. Limited global change due to the largest known Quaternary eruption, Toba 74 kyr BP? Quat. Sci. Rev. 21, 1593–1609 (2002).

    Article  Google Scholar 

  21. Schmidt, A. et al. Selective environmental stress from sulphur emitted by continental flood basalt eruptions. Nature Geosci. 9, 77–82 (2015).

    Article  Google Scholar 

  22. Robock, A. et al. Did the Toba volcanic eruption of 74 ka B.P. produce widespread glaciation? J. Geophys. Res. 114, http://dx.doi.org/10.1029/2008jd011652 (2009).

  23. Stenke, A. & Grewe, V. Simulation of stratospheric water vapor trends: impact on stratospheric ozone chemistry. Atmos. Chem. Phys. 5, 1257–1272 (2005).

    Article  Google Scholar 

  24. Glaze, L. S., Baloga, S. M. & Wilson, L. Transport of atmospheric water vapor by volcanic eruption columns. J. Geophys. Res. 102, 6099 (1997).

    Article  Google Scholar 

  25. Joshi, M. M. & Jones, G. S. The climatic effects of the direct injection of water vapour into the stratosphere by large volcanic eruptions. Atmos. Chem. Phys. 9, 6109–6118 (2009).

    Article  Google Scholar 

  26. Schmidt, G. A. et al. Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0). Geosci. Model Dev. 4, 33–45 (2011).

    Article  Google Scholar 

  27. McGregor, H. V. et al. Robust global ocean cooling trend for the pre-industrial Common Era. Nature Geosci. 8, 671–677 (2015).

    Article  Google Scholar 

  28. Timmreck, C. et al. Limited temperature response to the very large AD 1258 volcanic eruption. Geophys. Res. Lett. 36, http://dx.doi.org/10.1029/2009GL040083 (2009).

  29. Toohey, M., Krüger, K., Niemeier, U. & Timmreck, C. The influence of eruption season on the global aerosol evolution and radiative impact of tropical volcanic eruptions. Atmos. Chem. Phys. 11, 12351–12367 (2011).

    Article  Google Scholar 

  30. Mann, M. E., Fuentes, J. D. & Rutherford, S. Underestimation of volcanic cooling in tree-ring-based reconstructions of hemispheric temperatures. Nature Geosci. 5, 202–205 (2012).

    Article  Google Scholar 

  31. Frank, D. C. et al. Ensemble reconstruction constraints on the global carbon cycle sensitivity to climate. Nature 463, 527–530 (2010).

    Article  Google Scholar 

  32. LeGrande, A. N. & Anchukaitis, K. J. Volcanic eruptions and climate. PAGES 23 46–47 (2015).

    Article  Google Scholar 

  33. Sigl, M. et al. Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature 523, 543–549 (2015).

    Article  Google Scholar 

  34. Esper, J., Büntgen, U., Luterbacher, J. & Krusic, P. J. Testing the hypothesis of post-volcanic missing rings in temperature sensitive dendrochronological data. Dendrochronologia 31, 216–222 (2013).

    Article  Google Scholar 

  35. Bauer, S. E. et al. MATRIX (Multiconfiguration Aerosol TRacker of mIXing state): an aerosol microphysical module for global atmospheric models. Atmos. Chem. Phys. 8, 6003–6035 (2008).

    Article  Google Scholar 

  36. Schmidt, G. A. et al. Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J. Adv. Model. Earth Syst. 6, 141–184 (2014).

    Article  Google Scholar 

  37. Sander, S. P. et al. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies Report No. 17 (NASA Jet Propulsion Laboratory, 2011).

    Google Scholar 

  38. Vehkamäki, H. An improved parameterization for sulfuric acid–water nucleation rates for tropospheric and stratospheric conditions. J. Geophys. Res. 107, http://dx.doi.org/10.1029/2002jd002184 (2002).

  39. Mann, G. W. et al. Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity. Atmos. Chem. Phys. 14, 4679–4713 (2014).

    Article  Google Scholar 

  40. Textor, C. et al. Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmos. Chem. Phys. 6, 1777–1813 (2006).

    Article  Google Scholar 

  41. Seinfield, J. H. & Pandis, S. N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change 2nd edn (Wiley, 2006).

    Google Scholar 

  42. Chapman, S. A Theory of Upper-atmospheric Ozone (Edward Stanford, 1930).

    Google Scholar 

  43. Solomon, S. et al. The role of aerosol variations in anthropogenic ozone depletion at northern midlatitudes. J. Geophys. Res. 101, 6713–6727 (1996).

    Article  Google Scholar 

  44. Tie, X. & Brasseur, G. The response of stratospheric ozone to volcanic eruptions: Sensitivity to atmospheric chlorine loading. Geophys. Res. Lett. 22, 3035–3038 (1995).

    Article  Google Scholar 

  45. Rozanov, E. V. Climate/chemistry effects of the Pinatubo volcanic eruption simulated by the UIUC stratosphere/troposphere GCM with interactive photochemistry. J. Geophys. Res. 107, http://dx.doi.org/10.1029/2001jd000974 (2002).

    Article  Google Scholar 

  46. Aquila, V., Oman, L. D., Stolarski, R., Douglass, A. R. & Newman, P. A. The response of ozone and nitrogen dioxide to the eruption of Mt. Pinatubo at southern and northern midlatitudes. J. Atmos. Sci. 70, 894–900 (2013).

    Article  Google Scholar 

  47. Read, W. G., Froidevaux, L. & Waters, J. W. Microwave limb sounder measurement of stratospheric SO2 from the Mt. Pinatubo volcano. Geophys. Res. Lett. 20, 1299–1302 (1993).

    Article  Google Scholar 

  48. Nedoluha, G. E. et al. Increases in middle atmospheric water vapor as observed by the Halogen Occultation Experiment and the ground-based Water Vapor Millimeter-Wave Spectrometer from 1991 to 1997. J. Geophys. Res. 103, 3531–3543 (1998).

    Article  Google Scholar 

  49. Vernier, J. P. et al. Major influence of tropical volcanic eruptions on the stratospheric aerosol layer during the last decade. Geophys. Res. Lett. 38, http://dx.doi.org/10.1029/2011gl047563 (2011).

    Article  Google Scholar 

  50. Bekki, S. et al. The role of microphysical and chemical processes in prolonging the climate forcing of the Toba eruption. Geophys. Res. Lett. 23, 2669–2672 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

We thank NASA GISS for institutional support. We also thank the NASA MAP programme for continued support. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center.

Author information

Authors and Affiliations

Authors

Contributions

A.N.L. was inspired to seek out better aerosol microphysics modules by the mismatches of simulated and inferred climate impacts for volcanoes in the CMIP5/PMIP3 last millennium experiment. A.N.L. and K.T. conceived the work, performed the model simulations and analysed the results. All authors contributed to the text and the design of figures. K.T. and S.E.B. contributed expertise with the MATRIX model.

Corresponding authors

Correspondence to Allegra N. LeGrande or Kostas Tsigaridis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LeGrande, A., Tsigaridis, K. & Bauer, S. Role of atmospheric chemistry in the climate impacts of stratospheric volcanic injections. Nature Geosci 9, 652–655 (2016). https://doi.org/10.1038/ngeo2771

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2771

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing