Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Diapirs as the source of the sediment signature in arc lavas

Abstract

Island arc lavas, erupted above subduction zones, commonly contain a geochemical component derived from partial melting of subducted sediment. It is debated whether this sediment melt signature, with enriched trace element concentrations and isotope ratios, forms at relatively low or high temperatures. Here we compile and analyse the geochemistry of metamorphosed sedimentary rocks that have been exposed to pressures between 2.7 and 5 GPa during subduction at a range of locations worldwide. We find that the trace elements that form the sediment melt signature are retained in the sediments until the rocks have experienced temperatures exceeding 1,050 °C. According to thermal models, these temperatures are much higher than those at the surface of subducted slabs at similar pressures. This implies that the sediment melt signature cannot form at the slab surface. Using instability calculations, we show that subducted sediments detach from the downgoing slab at temperatures of 500–850 °C to form buoyant diapirs. The diapirs rise through the overlying hot mantle wedge, where temperatures exceed 1,050 °C, undergo dehydration melting, and release the trace elements that later form the sediment melt signature in the erupted lavas. We conclude that sediment diapirism may reduce the transport of trace elements and volatiles such as CO2 into the deep mantle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of pelitic UHP metasediment compositions to average shale, greywacke and loess compositions.
Figure 2: Density of subducted sediments at UHP conditions.
Figure 3: Density of the average UHP metasediment along typical subduction zone geotherms.
Figure 4: Calculated timescale for the initiation of a sediment diapir.
Figure 5: Summary of conditions for sediment diapir formation in global subduction zones.

Similar content being viewed by others

References

  1. Kessel, R., Schmidt, M. W., Ulmer, P. & Pettke, T. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature 437, 724–727 (2005).

    Article  Google Scholar 

  2. Plank, T. & Langmuir, C. H. Tracing trace elements from sediment input to volcanic output at subduction zones. Nature 362, 739–743 (1993).

    Article  Google Scholar 

  3. Elliott, T., Plank, T., Zindler, A., White, W. & Bourdon, B. Element transport from slab to volcanic front at the Mariana arc. J. Geophys. Res. 102, 14991–15019 (1997).

    Article  Google Scholar 

  4. Hawkesworth, C. J., Turner, S. P., McDermott, F., Peate, D. W. & van Calsteren, P. U–Th isotopes in arc magmas: Implications for element transfer from the subducted crust. Science 276, 551–555 (1997).

    Article  Google Scholar 

  5. van Keken, P. E., Kiefer, B. & Peacock, S. M. High-resolution models of subduction zones: Implications for mineral dehydration reactions and the transport of water into deep mantle. Geochem. Geophys. Geosyst. 3, 1056 (2002).

    Article  Google Scholar 

  6. Kelemen, P. B., Rilling, J. L., Parmentier, E. M., Mehl, L. & Hacker, B. R. in Inside the Subduction Factory Vol. 138 (ed. Eiler, J.) 293–311 (Geophysical Monograph, AGU, 2003).

    Book  Google Scholar 

  7. Peacock, S. M. et al. Thermal structure of the Costa Rica–Nicaragua subduction zone. Phys. Earth Planet. Inter. 149, 187–200 (2005).

    Article  Google Scholar 

  8. Wada, I. & Wang, K. Common depth of slab-mantle decoupling: Reconciling diversity and uniformity of subduction zones. Geochem. Geophys. Geosyst. 10, Q10009 (2009).

    Article  Google Scholar 

  9. Nichols, G. T., Wyllie, P. J. & Stern, C. R. Subduction zone melting of pelagic sediments constrained by melting experiments. Nature 371, 785–788 (1994).

    Article  Google Scholar 

  10. Schmidt, M. W., Vielzeuf, D. & Auzanneau, E. Melting and dissolution of subducting crust at high pressures: The key role of white mica. Earth Planet. Sci. Lett. 228, 65–84 (2004).

    Article  Google Scholar 

  11. Plank, T., Cooper, L. B. & Manning, C. E. Emerging geothermometers for estimating slab surface temperatures. Nature Geosci. 2, 611–615 (2009).

    Article  Google Scholar 

  12. Hermann, J. & Rubatto, D. Accessory phase control on the trace element signature of sediment melts in subduction zones. Chem. Geol. 265, 512–526 (2009).

    Article  Google Scholar 

  13. Hermann, J. & Spandler, C. J. Sediment melts at sub-arc depths: An experimental study. J. Petrol. 49, 717–740 (2008).

    Article  Google Scholar 

  14. Kelemen, P. B., Hanghøj, K. & Greene, A. R. in The Crust Vol. 3 (ed. Rudnick, R. L.) 593–659 (Treatise on Geochemistry, Elsevier, 2003).

    Google Scholar 

  15. Castro, A. & Gerya, T. V. Magmatic implications of mantle wedge plumes: Experimental study. Lithos 103, 138–148 (2008).

    Article  Google Scholar 

  16. Yin, A. et al. Early paleozoic tectonic and thermomechanical evolution of ultrahigh-pressure (UHP) metamorphic rocks in the northern Tibetan plateau, northwest China. Int. Geol. Rev. 49, 681–716 (2007).

    Article  Google Scholar 

  17. Gerya, T. V. & Yuen, D. A. Rayleigh–Taylor instabilities from hydration and melting propel ‘cold plumes’ at subduction zones. Earth Planet. Sci. Lett. 212, 47–62 (2003).

    Article  Google Scholar 

  18. Becker, H., Jochum, K. P. & Carlson, R. W. Trace element fractionation during dehydration of eclogites from high-pressure terranes and the implications for element fluxes in subduction zones. Chem. Geol. 163, 65–99 (2000).

    Article  Google Scholar 

  19. Bebout, G. E., Ryan, J. G., Leeman, W. P. & Bebout, A. E. Fractionation of trace elements by subduction-zone metamorphism—effect of convergent-margin thermal evolution. Earth Planet. Sci. Lett. 171, 63–81 (1999).

    Article  Google Scholar 

  20. Busigny, V., Cartigny, P., Philippot, P., Ader, M. & Javoy, M. Massive recycling of nitrogen and other fluid-mobile elements (K, Rb, Cs, H) in a cold slab environment: Evidence from HP to UHP oceanic metasediments of the Schistes Lustrés nappe (western Alps, Europe). Earth Planet. Sci. Lett. 215, 27–42 (2003).

    Article  Google Scholar 

  21. Hermann, J. & Green, D. H. Experimental constraints on high pressure melting in subducted crust. Earth Planet. Sci. Lett. 188, 149–168 (2001).

    Article  Google Scholar 

  22. Thomsen, T. B. & Schmidt, M. W. Melting of carbonated pelites at 2.5–5.0 GPa, silicate–carbonatite liquid immiscibility, and potassium–carbon metasomatism of the mantle. Earth Planet. Sci. Lett. 267, 17–31 (2008).

    Article  Google Scholar 

  23. Johnson, M. C. & Plank, T. Dehydration and melting experiments constrain the fate of subducted sediments. Geochem. Geophys. Geosyst. 1, 1007 (1999).

    Google Scholar 

  24. Klimm, K., Blundy, J. D. & Green, T. H. Trace element partitioning and accessory phase saturation during H2O-saturated melting of basalt with implications for subduction zone chemical fluxes. J. Petrol. 49, 523–553 (2008).

    Article  Google Scholar 

  25. Massonne, H-J., Kennedy, A., Nasdala, L. & Theye, T. Dating of zircon and monazite from diamondiferous quartzofeldspathic rocks of the Saxonian Erzgebirge. Mineral. Mag. 71, 407–425 (2007).

    Article  Google Scholar 

  26. Skora, S. & Blundy, J. High-pressure hydrous phase relations of radiolarian clay and implications for the involvement of subducted sediment in arc magmatism. J. Petrol. 51, 2211–2243 (2010).

    Article  Google Scholar 

  27. Sharp, Z. D., Essene, E. J. & Smyth, J. R. Ultra-high temperatures from oxygen isotope thermometry of a coesite-sanidine grospydite. Contrib. Mineral. Petrol. 122, 358–370 (1992).

    Article  Google Scholar 

  28. Gorczyk, W., Gerya, T. V., Connolly, J. A. D., Yuen, D. A. & Rudolph, M. Large-scale rigid-body rotation in the mantle wedge and its implications for seismic tomography. Geochem. Geophys. Geosyst. 7, Q05018 (2006).

    Article  Google Scholar 

  29. Currie, C. A., Beaumont, C. & Huismans, R. S. The fate of subducted sediments: A case for backarc intrusion and underplating. Geology 35, 1111–1114 (2007).

    Article  Google Scholar 

  30. Plank, T. & Langmuir, C. H. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 145, 325–394 (1998).

    Article  Google Scholar 

  31. Houseman, G. A. & Molnar, P. Gravitational (Rayleigh–Taylor) instability of a layer with non-linear viscosity and convective thinning of continental lithosphere. Geophys. J. Int. 128, 125–150 (1997).

    Article  Google Scholar 

  32. Marsh, B. D. Island arc development: Some observations, experiments, and speculations. J. Geol. 87, 687–713 (1979).

    Article  Google Scholar 

  33. Whitehead, J. A. Jr & Luther, D. S. Dynamics of laboratory diapir and plume models. J. Geophys. Res. 80, 705–717 (1975).

    Article  Google Scholar 

  34. Conrad, C. P. & Molnar, P. The growth of Rayleigh–Taylor-type instabilities in the lithosphere for various rheological and density structures. Geophys. J. Int. 129, 95–112 (1997).

    Article  Google Scholar 

  35. Jull, M. & Kelemen, P. B. On the conditions for lower crustal convective instability. J. Geophys. Res. 106, 6423–6446 (2001).

    Article  Google Scholar 

  36. Hirth, G. & Kohlstedt, D. L. in Inside the Subduction Factory Vol. 138 (ed. Eiler, J.) 83–105 (Geophysical Monograph, AGU, 2003).

    Book  Google Scholar 

  37. Hirth, G., Teyssier, C. & Dunlap, W. J. An evaluation of quartzite flow laws based on comparisons between experimentally and naturally deformed rocks. Int. J. Earth Sci. 90, 77–87 (2001).

    Article  Google Scholar 

  38. Clift, P. D. & Vannucchi, P. Controls on tectonic accretion versus erosion in subduction zones: Implications for the origin and recycling of the continental crust. Rev. Geophys. 42, RG2001 (2004).

    Article  Google Scholar 

  39. von Huene, R. & Scholl, D. W. Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev. Geophys. 29, 279–316 (1991).

    Article  Google Scholar 

  40. Hall, P. S. & Kincaid, C. Diapiric flow at subduction zones: A recipe for rapid transport. Science 292, 2472–2475 (2001).

    Article  Google Scholar 

  41. Behn, M. D., Hirth, G. & Kelemen, P. B. Trench-parallel anisotropy produced by foundering of arc lower crust. Science 317, 108–111 (2007).

    Article  Google Scholar 

  42. Hacker, B. R. H2O subduction beyond arcs. Geochem. Geophys. Geosyst. 9, Q03001 (2008).

    Article  Google Scholar 

  43. Gorman, P. J., Kerrick, D. M. & Connolly, J. A. D. Modeling open system metamorphic decarbonation of subducting slabs. Geochem. Geophys. Geosyst. 7, Q04007 (2006).

    Article  Google Scholar 

  44. Kerrick, D. M. & Connolly, J. A. D. Metamorphic devolatilization of subducted oceanic metabasalts: Implications for seismicity, arc magmatism and volatile recycling. Earth Planet. Sci. Lett. 189, 19–29 (2001).

    Article  Google Scholar 

  45. Molina, J. F. & Poli, S. Carbonate stability and fuid composition in subducted oceanic crust: An experimental study on H2O–CO2-bearing basalts. Earth Planet. Sci. Lett. 176, 295–310 (2000).

    Article  Google Scholar 

  46. Varekamp, J. C. & Thomas, E. Volcanic and anthropogenic contributions to global weathering budgets. J. Geochem. Expl. 62, 149–159 (1998).

    Article  Google Scholar 

  47. Berner, R. A. & Kothavala, Z. GEOCARB III: A revised model of atmospheric CO2 over Phanerozoic time. Am. J. Sci. 301, 182–204 (2001).

    Article  Google Scholar 

  48. Connolly, J. A. D. Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 236, 524–541 (2005).

    Article  Google Scholar 

  49. Holland, T. & Powell, R. Calculation of phase relations involving haplogranitic melts using an internally consistent thermodynamic dataset. J. Petrol. 42, 673–683 (2001).

    Article  Google Scholar 

  50. Behn, M. D. & Kelemen, P. B. The relationship between seismic P-wave velocity and the composition of anhydrous igneous and meta-igneous rocks. Geochem. Geophys. Geosyst. 4, 1041 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. McLennan for assistance in compiling shale and greywacke compositions, I. Wada for providing her slab top thermal models, and C. Conrad, A. Shaw, T. Plank and J. Connolly for insightful conversations. Funding for this work was provided by NSF and WHOI’s Deep Ocean Exploration Institute.

Author information

Authors and Affiliations

Authors

Contributions

M.D.B., P.B.K. and G.H. performed the instability calculations. B.R.H., P.B.K. and H-J.M. compiled the UHP metapelite database. P.B.K. compiled the shale and greywacke database and produced the geochemical figures. M.D.B. took the lead in preparing the manuscript with significant input from all authors.

Corresponding author

Correspondence to Mark D. Behn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2809 kb)

Supplementary Information

Supplementary Information (XLS 98 kb)

Supplementary Information

Supplementary Information (XLS 70 kb)

Supplementary Information

Supplementary Information (XLS 78 kb)

Supplementary Information

Supplementary Information (XLS 37 kb)

Supplementary Information

Supplementary Information (XLS 38 kb)

Supplementary Information

Supplementary Information (XLS 139 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behn, M., Kelemen, P., Hirth, G. et al. Diapirs as the source of the sediment signature in arc lavas. Nature Geosci 4, 641–646 (2011). https://doi.org/10.1038/ngeo1214

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1214

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing