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Changes in the regulation of cortical neurogenesis
contribute to encephalization during amniote brain
evolution
Tadashi Nomura1,2, Hitoshi Gotoh1 & Katsuhiko Ono1

The emergence of larger brains with large numbers of neurons is an evolutionary innovation

in mammals and birds. However, the corresponding changes in cortical developmental

programmes during amniote evolution are poorly understood. Here we examine the cortical

development of Madagascar ground geckos, and report unique characteristics of their rep-

tilian cortical progenitors. The rates of proliferation and neuronal differentiation in the gecko

cortex are much lower than those in other amniotes. Notch signalling is highly activated in the

gecko cortical progenitors, which provides a molecular basis for the low rate of cortical

neurogenesis. Interestingly, multiple neuron subtypes are sequentially generated in the gecko

cortex, similar to other amniotes. These results suggest that changes in the regulation of

cortical neural progenitors have accelerated neurogenesis and provided encephalization in

mammalian and archosaurian lineages. In addition, the temporal regulation for making

cortical neuronal subtypes has evolved in a common ancestor(s) of amniotes.
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T
here is great diversity in the size and complexity of organs
among animals, which reflects the diverse physiological
capabilities necessary to adapt to various ecological

niches1. Variations in organ morphology are primarily
dependent on differential growth rates during the embryonic
and post-embryonic periods2. Several developmental parameters,
such as the duration of organogenesis and the relative abundance
of cell proliferation, differentiation and cell death, vary among
species and are critical to create the species-specific architectures
of organs3–5.

For centuries, evolutionary changes in vertebrate brain
morphology have been of particular interest to neuroscientists6,7.
Brain-body scaling indicates that mammals and birds have
relatively large brains compared with other vertebrate species8.
Furthermore, the dorsal region of the telencephalon (pallium) in
these animals is elaborated in distinct ways. The mammalian
pallium gives rise to the neocortex, a conspicuous structure
characterized by the tangential expansion of the surface area and
a six-layered lamination9. In contrast, the avian dorsal pallium
gives rise to the Wulst or hyperpallium, which is not composed of
tangential laminar sheets, but rather of nuclear structures with
similar neuronal characteristics10. These anatomical hallmarks
are constructed with large numbers of neurons of a variety of
subtypes, which are generated by the rapid expansion of neural
stem/progenitor cells in the early embryonic stages followed by
the sequential production and migration of distinct neuronal
subtypes during embryogenesis11. Recent studies have shown that
the differential regulations of neuronal subtype specification and
migration underlies the formation of mammalian- and avian-
specific pallial structures12–14. However, the regulatory mecha-
nisms underlying the increased size of the pallium and the
evolutionary origin of multiple subtypes of pallial neurons remain
to be elucidated.

As all extant amniotes have diverged from ancestral groups of
reptiles15, modern reptiles, including lepidosaurs and non-avian
archosaurs (Fig. 1a), may possess plesiomorphic traits inherited
from the common ancestor of amniotes. Indeed, compared with
mammals and birds, the extant reptiles have relatively small
brains, and their cortex consists of a three-layered laminar
structure16. These characteristics of the reptilian brain were
thought to be an evolutionary intermediate between amphibian
and mammalian/avian brains17,18. However, cellular and mole-
cular analyses of reptilian cortical development have been
extremely limited owing to technical difficulties in embryonic
manipulation.

Here, we focus on the Madagascar ground gecko (Paroedura
pictus), a species of geckonoids, which are included in lepidosaurs
(Fig. 1b). The Pictus gecko exhibits several unique characteristics,
such as high reproductive activity in all seasons and a hard-
shelled egg, which are highly advantageous for experimental
biology19. We establish embryonic manipulation of the gecko and
determine that the neural stem/progenitor cells in the developing
gecko cortex have a low neurogenic potential. Canonical Notch
signalling, which constrains the neurogenic potential of neural
stem/progenitor cells, is highly activated in the gecko cortical
ventricular zone, compared with other amniotes. Interestingly,
the sequential generation of lamina-specific neuronal subtypes is
evident in the gecko cortex, as is the case in mammalian and
avian pallial development. These results suggest that changes in
the rate of neurogenesis have occurred independently in
mammalian and archosaurian lineages, and have resulted in the
convergent encephalization that occurred during amniote brain
evolution. In contrast, the temporal regulation of neuronal
subtype specification is a shared feature of various amniote
species, which implies that this trait is inherited from a common
ancestor of amniotes.

Results
Lower proliferative activity in the developing gecko cortex. To
address reptilian cortical neurogenesis, we first examined the
ontogeny of the cortical development in the Madagascar ground
geckos. Neural stem/progenitor cells and differentiated neurons
in the gecko cortex were distinguished by their expression of Sox2
and �III-tubulin, respectively (Fig. 1c). At 7 days of post-ovipo-
sition (d.p.o.), the first cortical neurons appeared at the surface of
the telencephalic vesicles, just above the Sox2-positive ventricular
zone. As embryogenesis proceeded, the volume of the telen-
cephalon and the thickness of the cortical neuronal layer were
gradually increased, whereas the thickness of the cortical
ventricular zone decreased proportionately (Fig. 1c and
Supplementary Fig. S1). The proportions of the ventricular zone
and the neuronal layer in the gecko cortex at B14–18 d.p.o. were
comparable to those of the mouse cortex at embryonic days
12–14 (Fig. 1c). To determine the total neurogenic period in the
gecko cortex, we administered 5-ethynyl-20-deoxyuridine (EdU)
into the gecko brain at various embryonic stages and analysed
EdU-labelled cells in the dorsal cortex (DCx) at later stages. The
number of EdU-positive cells was gradually decreased with pro-
gressing EdU administration stages, and none of the cortical
neurons were labelled by the injection of EdU at 23 d.p.o.
(Supplementary Fig. S1). These results suggest that cortical neu-
rogenesis terminates by 23 d.p.o. Thus, the total length of the
cortical neurogenic period in the gecko is much shorter than the
total length of embryogenesis (60–80 days between oviposition
and hatching19), similar to other reptilian species20,21

(Supplementary Table S1). The increase of cortical thickness at
later embryonic stages in the gecko cortex was owing to massive
elaboration of dendrites and axon bundles, rather than the
increase of neuron numbers (Supplementary Fig. S2).

Next, we addressed the cell division in the developing gecko
cortex. Immunostaining of phosphorylated histone H3 distin-
guishes M-phase cells during mitosis. At 14 d.p.o., which is the
middle stage of corticogenesis, mitotic cells were scattered at
the apical side of the gecko cortical ventricular zone (Fig. 1d–f).
The frequency of mitotic cells exhibited a medial-low to lateral-
high gradient, which is similar to the range in mouse (Fig. 1g) and
chicken pallia13. Notably, the ratio of mitotic cells to Sox2-
positive ventricular neural stem/progenitor cells was three times
lower in the gecko cortex than in the mouse neocortex at E14.5
(Fig. 1g). Furthermore, we could not detect any mitotic features
on the basal side of the ventricular zone, which suggests that the
gecko cortex lacks subventricular basal progenitors (Fig. 1d,e).
Interestingly, the expression of Tbr2, which delineates a
subpopulation of basal progenitors in the mammalian neocortex22,
was detected on the basal side of the gecko ventricular zone
(Fig. 1h). In contrast to the mouse cortex, Tbr2-positive cells in the
gecko cortex did not incorporate bromodeoxyuridine (BrdU) and
were positive for �III-tubulin, indicating that these cells are post-
mitotic neurons (Fig. 1h,i). These results indicate that the lower
frequency of cell division at the apical ventricular side and the
absence of basal progenitors are characteristics of the developing
gecko cortex.

Prolonged cell-cycle length in gecko corticogenesis. The lower
frequency of apical cell division in the gecko cortex might result
from an extended cell-cycle length in cortical neural stem/
progenitor cells. To determine the cell-cycle length in the pro-
liferating cells of the gecko cortex, we used two-coloured pulse
labelling in cycling cells (Fig. 2a,b). The administration of distinct
thymidine analogues, EdU and BrdU, at different time points
enabled us to determine the cell-cycle kinetics of proliferating
cells23. The total number of proliferating cells was estimated by
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quantifying Sox2-positive cells in the ventricular zone. Two-
coloured pulse labelling analysis indicated that the total length of
the cell cycle (Tc) of neural stem/progenitor cells in the gecko
DCx at 18 d.p.o. was 50.9±6.0 h (Fig. 2c), which was remarkably
longer than that that of neural stem/progenitors in the developing
mouse cortex (Tc¼ 8–18 h24). However, the length of S phase
(Ts) in the gecko cortex was 5.4±1.3 h, which is comparable to
that in the mouse cortex (Ts¼ 3–5 h). This similarity suggests
that S-phase duration is constant in amniotes and that the longer
cell cycle in the gecko results from a lengthening of other

cell-cycle phases such as G1 phase. Similar cell-cycle kinetics were
obtained from the proliferating cells at the lateral part of the
telencephalon, which gives rise to the dorsal ventricular ridge
(Fig. 2c), indicating that long cell-cycle duration is common in all
regions of the gecko telencephalon.

A low proportion of neuron-generating division in geckoes.
To visualize neural stem/progenitor cell behaviours of the
developing gecko cortex, we performed in vivo electroporation
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Figure 1 | Cortical development in geckos. (a) A phylogenic tree of amniotes. The position of the turtles is based on a recent report46,47. (b) An gecko

embryo (P. pictus; 18 d.p.o.). (c) The ontogeny of the telencephalon in the gecko (left, from 7 to 22 d.p.o.) is shown alongside a comparable stage of

telencephalon development in the mouse (right, E14.5). Immunostaining was performed with anti-Sox2 and anti-� III tubulin antibodies. (d–f) The

distribution of mitotic cells in the developing gecko ventricular zone. Phosphorylated histone H3-positive mitotic cells are scattered on the apical side of the

ventricular zone that is distinguished by PAX6 (e) and Sox2 (f) expression. (g) The proportion of mitotic cells in the gecko cortex (18 d.p.o.; left graph)

compared with that in the mouse cortex (E14.5; right graph). Values represent mean (n¼ 3 animals) and s.d. (h) The distribution of Tbr2-positive cells and

BrdU-labelled cells in the ventricular zone of the developing gecko cortex. (i) Co-expression of Tbr2 and � III tubulin (an arrowhead). Scale bars, 200mm
(c), 50mm (d) and 20mm (f,h,i).
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into the developing gecko cortex, and traced the morphology and
dynamics of ventricular cells using a green fluorescent protein
(GFP) expression vector (Fig. 3a,b). Two days after electro-
poration, GFP expression was detected in Sox2-positive ven-
tricular cells with long and direct radial fibres extending towards
the surface of the cortex (Fig. 3c). Four days after electroporation,
a subset of GFP-labelled cells began to express Tbr2 on the basal
side of the ventricular zone. Some GFP-positive cells left the
ventricular zone and extended multiple processes that were
positive for �III-tubulin, which indicates that these were differ-
entiated neurons (Fig. 3d).

During mammalian corticogenesis, symmetric progenitor–
progenitor division increases the progenitor pool, whereas
asymmetric neuron-producing division generates vast numbers
of cortical neurons25. To address the frequency and the type of
cell divisions occurring at middle stages of gecko corticogenesis,
we conducted an in vivo clonal analysis of cortical neural stem/
progenitor cells with a conditional multi-colour reporter system.
We used the Brainbow1.0L vector, which expresses distinct
colours of fluorescent proteins (RFP, YFP and CFP) following
Cre-mediated recombination26. Electroporation of the Brainbow
vector together with a Cre expression vector at a low
concentration (1 ng ml� 1) induced recombination at a clonal
density27. Different recombination frequencies for multiple
copies of the vectors provided different colour combinations in
each clone (Supplementary Fig. S3); however, we could not
detect CFP-positive clones, most likely owing to preferential
recombination of specific loxP sequences28. Importantly, the
expression levels of the fluorescent proteins were maintained
even after several rounds of cell divisions, confirming that the
plasmid-based Brainbow system can be utilized for clonal
analysis at least for a short period during development
(Supplementary Fig. S3).

After electroporation of the gecko cortex, we quantified the
number of cells in each recombined clone and determined the
identity of the daughter cells as progenitors (P) or neurons (N)

according to their morphology (radial glial or multipolar
neuronal), position (the ventricular or the mantle zone) and
marker expression (�III-tubulin) (Fig. 3e). At 2 days after
electroporation, we confirmed that all of the recombined cells
were single progenitor cells (Supplementary Fig. S3). Surprisingly,
even 4 days after electroporation, large numbers of recombinants
still remained as single progenitor cells, indicating that these cells
did not undergo cell division after recombination (42.5% of
recombinants, n¼ 40 clones, Fig. 3f). The number of two-cell
clone was slightly higher in the lateral/ventral pallium than in the
medial/dorsal pallium, which is consistent with the medial-low to
lateral-high gradient of proliferation activity in the gecko cortex.
Among two-cell clones, Pþ P and PþN clones were observed in
similar proportions (Fig. 3g), indicating that symmetric and
asymmetric divisions had occurred with equal frequencies.
Interestingly, a small population NþN clones were also detected,
which suggests that a few committed neuronal precursors exist in
the gecko ventricular zone. These trends were similar in three-cell
clones that comprise all possible combinations of daughter cells
(Pþ PþP, Pþ PþN and PþNþN), although the majority
were progenitor cell clones (Pþ Pþ P, Fig. 3g).

Using these data, we quantified the proportions of P and N
cells among the recombined cells and estimated the rates of
progenitor and neuron expansion after recombination (Fig. 3h).
At 4 days after electroporation (18 d.p.o.), the proportion of P
cells was much greater than that of N cells (77.9% of P cells and
22.1% of N cells), indicating that the majority of clones that
originated from single neural stem/progenitor cells predomi-
nantly contributed to the maintenance of the progenitor pool
rather than the expansion of neurons. This conclusion is
suggested primarily by the low frequency of cell division and
the prevailing occurrence of symmetric Pþ P division rather than
asymmetric neuron-generating division. These lines of evidence
indicate that gecko neural stem/progenitor cells predominantly
and slowly undergo self-renewing division, which results in a
minimal generation of cortical neurons.
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Figure 2 | Cell proliferation and cell-cycle length in the developing gecko cortex. (a) Calculation of cell-cycle length in the gecko ventricular zone.

Sequential admnistration of EdU and BrdU estimates the total length of the cell cycle and S phase in neural stem/progenitors. (b) Immunostaining of the

gecko DCx (upper panels) and dorsal ventricular ridge (DVR, lower panels) with anti-Sox2, EdU and BrdU antibodies. White arrows indicate Sox2þ /

EdUþ /BrdUþ cells, and yellow arrows indicate Sox2þ EdUþ /BrdU� cells. (c) Quantifictaion of total cell-cycle length (Tc) and S phase (Ts) in the

gecko DCx and DVR. Values represent mean (n¼ 2 animals) and range. Scale bar, 100mm.
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Comparison of cortical neuronal outputs in amniotes. To
investigate differences in cortical neurogenic rates between spe-
cies, we compared the frequencies of neuronal differentiation in
the dorsal pallia of various amniotes, including mice, geckos,

turtles (Chinese soft-shelled turtles; Pelodiscus sinensis) and
chickens. We labelled pallial neural stem/progenitor cells by
administering EdU or electroporating a GFP expression vector,
and examined the proportion of EdU- or GFP-labelled neurons.
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Neuronal output was examined at different embryonic stages
during the cortical/pallial neurogenic period in each spe-
cies21,24,29 (Fig. 4a). In mouse and chicken embryos, a large
number of EdU- or GFP-positive cells migrated from the
ventricular zone and differentiated into neurons at just 1 day
after pulse labelling (17–54% of total EdU- or GFP-labelled cells;
Fig. 4b,c and Supplementary Fig. S4). The rapid and massive
neuronal differentiation in the mouse and chicken embryos was
evident in all stages examined. In contrast, the frequency of
neuronal differentiation was increased slowly in gecko embryos,
in which a large number of EdU- or GFP-positive cells still
remained in the ventricular zone and expressed Sox2 at 2 days
after pulse labelling (Fig. 4b,c and Supplementary Fig. S4).
Interestingly, the frequency of neuronal output was higher in
turtles than in geckos: the percentage of neurons among GFP-
positive cells at 2 days after pulse labelling was 25.6% in turtles
(14 d.p.o.) and 1.5% in geckoes (14 d.p.o.). These results indicate
that the proportion of neuronal output varies greatly among
species, which is most likely because of the species-specific
proliferation/differentiation kinetics of cortical neural stem/
progenitor cells. The differences in the neurogenic frequency
between geckos and turtles also imply that these reptilian species
have distinct regulatory mechanisms for cortical neuronal
differentiation.

Inter-species differences in Notch activation levels. To identify
the molecular mechanisms underlying inter-species differences
in the rate of neuronal differentiation, we focused on Notch
signalling, which has a crucial role in the maintenance of neural
stem/progenitor cells in the embryonic brains. Upon activation,
the intracellular domain of the Notch receptor (NICD) translo-
cates to the nucleus and interacts with the transcription factor
RBP-Jk (also known as CSL or CBF1), which regulates various
downstream genes that are essential for maintaining stemness30.
First, we addressed the expression of RBP-Jk in the cortical/pallial
neural stem/progenitor cells of various amniote species. The
expression of RBP-Jk was detected in neural stem/progenitor cells
of developing mouse, gecko, turtle and chicken cortices/pallia
(Supplementary Fig. S5). Next, to examine the distribution of
Notch signalling-activated cells in the developing cortex/pallium,
we utilized a reporter vector containing CSL-responsive elements
upstream of GFP, which faithfully reports RBP-Jk-dependent
canonical Notch signalling31. The Notch reporter vector was
electroporated into the dorsal telencephalon of mouse, gecko,
turtle and chicken embryos (Fig. 5). To trace electroporated cells,
a vector that expresses mRFP under the control of the CMV
promoter was co-electroporated with the reporter vector. Two
days after electroporation, the expression of GFP (Notch
reporter) was observed in Sox2-positive ventricular cells in all
amniotes examined (Fig. 5a). However, there were significant
inter-species differences in the proportion of Notch reporter-
positive cells. In mice, only a subset of mRFP-positive ventricular
cells highly expressed GFP (46.1±5.1% of total RFP/Sox2þ cells,
n¼ 3 animals, Fig. 5c), whereas other cells exhibited low levels of
GFP expression or were GFP-negative, as previously reported32.
Mosaic patterns of GFP expression in neural stem/progenitor
cells were also observed in the developing cortices/pallia of turtle
and chicken embryos (36.6±2.4% of total RFP/Sox2þ cells in
turtles, n¼ 2 animals; 40.6±8.8% of total RFP/Sox2þ cells in
chicken, n¼ 3 animals; Fig. 5c). In contrast, almost all of the
mRFP-positive cells in the ventricular zone of the gecko cortex
highly expressed GFP in the gecko cortex (97.2±3.95% of total
RFP/Sox2þ cells, n¼ 3 animals, Fig. 5c). To quantify the
activation level of Notch signalling among different species, we
electroporated a 4�CSL-luciferase vector into the mouse, gecko

and chicken cortices/pallia at distinct embryonic stages and
performed a luciferase reporter assay. In mouse and gecko
cortices, the promoter activity of the Notch reporter vector was
increased by the progression of embryonic stages; geckos
exhibited higher levels of promoter activities than other species,
particularly at later embryonic stages (Fig. 5c). Interestingly, the
promoter activity of Notch reporter was lower in the developing
chicken pallium at all stages examined (Fig. 5c). These data
suggest that canonical Notch signalling is activated in stage-
dependent and species-specific manners in cortical/pallial neural
stem/progenitor cells.

To address whether Notch signalling is required for the
maintenance of neural stem/progenitor cells in the developing
gecko cortex, we performed gain- and loss-of-function analyses of
Notch signalling using expression vectors for NICD and the
dominant-negative form of RBP-Jk (dnRBP-Jk). At 4 days after
electroporation, differentiated neurons and neural stem/progeni-
tor cells were quantified on the basis of Sox2 expression.
Compared with controls that were electroporated with the GFP
expression vector, NICD-overexpression embryos had a signifi-
cantly reduced number of differentiated neurons (Sox2-negative
GFP-labelled cells: 33.9±9.2% in control embryos, n¼ 3 animals;
14±5.4% in NICD-overexpressing embryos, n¼ 3, Fig. 5d,e),
which indicates that sustaining Notch signalling suppressed
neurogenesis in the developing gecko cortex. In contrast, the
introduction of the dnRBP-Jk expression vector dramatically
enhanced neuronal differentiation (83.4±7.6%, n¼ 3) and
decreased the proportion of neural stem/progenitor cells
(Fig. 5d,e), which indicates that the inhibition of endogenous
Notch signalling is sufficient to induce abundant neurogenesis in
the gecko cortex. Together, these results indicate that inter-
species variation in canonical Notch signalling activity is a central
factor in determining the differential neurogenic potentials
observed during cortical/pallial development in various amniotes.

Sequential generation of neuronal subtypes in geckoes. Finally,
to address the relationship between the lower rate of neurogenesis
and the extent of neuronal diversity in the gecko cortex, we
examined the molecular characteristics of gecko cortical neurons.
In the mammalian neocortex, several transcription factors are
expressed in a lamina-specific manner. Among these factors,
CTIP2 is predominantly expressed by layer V projection neurons,
whereas SATB2 is detected in the neurons of cortical layer II–IV
and VI neurons33,34 (Supplementary Fig. S6). We found that
CTIP2 and SATB2 were strongly expressed in the gecko DCx
(Fig. 6). In contrast to the mouse cortex, neuronal subtypes
expressing CTIP2 or SATB2 were not aligned as radially oriented
layers in the gecko cortex: CTIP2-positive cells were distributed at
the antero-medial part of the DCx, whereas SATB2-positive cells
were detected at the posterior-lateral part of the DCx, although
these neuronal populations were significantly intermingled
(Fig. 6a–c,e–g). In addition, there was a subpopulation of cells
in the DCx that expressed both CTIP2 and SATB2 (Fig. 6c,g). The
expression of Tbr1 and FoxP2, which are the markers for cortical
layer VI, were also detected in the developing gecko cortex
(Supplementary Fig. S6). CTIP2 and SATB2 were also expressed
in the turtle cortex, which suggests that the cortex in reptiles
commonly consists of multiple neuronal subtypes distinguished
by lamina-specific layer markers (Fig. 6d,h).

In mammalian corticogenesis, lamina-specific neurons are
successively generated in a temporally ordered manner. To
examine whether a temporal pattern of neuronal subtype
specification exists in the gecko cortex, we performed birth date
analyses of CTIP2 and/or SATB2-positive cortical neurons by
administrating small amounts of EdU into the developing brain
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vesicles. We injected EdU at 14 or 18 d.p.o., and examined the
expression of lamina-specific markers in EdU-labelled cells at
37–45 d.p.o. Pulse labelling of neurons born at different develop-
mental stages indicated the successful generation of specific
neuronal subtypes in the gecko DCx. Neurons labelled with EdU
at 14 d.p.o. predominantly expressed only CTIP2, whereas those
labelled with EdU exposure at 18 d.p.o. predominantly expressed
both CTIP2 and SATB2 (Fig. 6i–q). Notably, equal proportions of
SATB2-positive neurons were observed in embryos labelled with
EdU at 14 or 18 d.p.o., which suggests that this type of neurons is
continuously generated during the neurogenic period (Fig. 6m,q).
These results indicate that the temporal specification mechanisms
that generate laminar neuronal subtypes are evident in the cortex

of reptiles, although the proliferation and differentiation
capacities of neural stem/progenitor cells are significantly lower
in reptiles than in mammals.

Discussion
Changes in developmental mechanisms governing cell prolifera-
tion and differentiation are thought to have critical roles in the
evolutionary expansion of the brain35. Here, we determined that
the frequencies of cell division in the gecko cortex are
significantly lower than those observed in other amniotes. This
difference is primarily the result of a long cell-cycle length and the
prevalence of self-renewing of neural stem/progenitor cells in the
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gecko. As neurogenesis in the gecko cortex terminates at the early
embryonic stages, total rounds of cell division during the cortical
neurogenic period might be limited. Furthermore, proliferating
basal progenitors, which are responsible for an extensive increase
of neuron numbers in the mammalian cortex36, are missing in the
gecko cortex. Thus, the relatively inactive character of gecko

cortical ventricular cells provides less amplification of the
progenitor pool and of neurons, which may contribute to a
minimum elaboration of the DCx in this species.

The number of apical mitotic cells in the gecko pallium
exhibited a medial-low and lateral-high gradient, as seen in the
mouse pallium. A similar pattern of proliferation kinetics has
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been reported in the developing avian pallium13,37. These data
suggest that the common regulatory mechanisms govern spatial
differences in progenitor divisions across amniote species.
Aboitiz38 suggested that the upregulation of Pax6 provided the
expansion of the ventral pallium in non-mammalian amniotes
and that the additional enhancement of dorsal factors, such as
Wnt signalling, contributed to massive elaboration of the dorsal
pallium in the mammalian lineage. Of note, the secondary
proliferative zone is also observed in the avian ventral pallium39,
which resembles the mammalian cortical SVZ. As we could not
detect such a proliferative zone in the gecko pallium, the
secondary proliferative zone might have evolved independently
in the mammalian and arcosaurian lineages but by recruiting
similar regulatory mechanisms. Luzzati et al.40 hypothesized that
the regulatory mechanisms for making the mammalian dorsal
pallium may have been co-opted from those in the reptilian
ventral pallium. Recent studies have elucidated the genetic
mechanisms underlying cell division frequencies and cell-cycle
length during murine cortical development41,42, which provides
insights into the regulation of the species-specific proliferation
kinetics of cortical neural stem/progenitor cells.

We showed that Notch signalling is highly activated in the
developing gecko ventricular cells, which significantly constrains
the frequency of neuronal differentiation. Consistently, the
constitutive activation of Notch-signalling components sup-
presses neuronal differentiation in various vertebrate species43–45.
Furthermore, there are remarkable differences in the Notch
activation status in the cortical neural stem/progenitor cells of
amniotes. Therefore, the spatio-temporal regulation of Notch
signalling in neural stem/progenitor cells may provide a
molecular basis for the inter-species differences in pallial
neurogenic rates. In the developing mouse brains, the mosaic
activation of Notch signalling in the neural stem/progenitor
cells is essential for cell-cycle progression and neuronal
differentiation32,43. It is noteworthy that turtles and chickens
also exhibit mosaic patterns of Notch activation and rapid

neuronal outputs during corticogenesis. Recent genomic analysis
revealed that turtles are included in the archosaurs as a sister group
of birds46,47. Thus, our data provide the first evidence that turtles
and birds share developmental characteristics with respect to
cortical neurogenesis.

Despite minimal rates of neurogenesis, our results, together
with recent findings by others48 (including Drs I.K. Suzuki and
T. Hirata, personal communication), indicate that the reptilian
cortex possesses distinct neuronal subtypes distinguished by the
expression of specific transcription factors. Furthermore, we
revealed the successive generation of neuronal subtypes in the
developing gecko cortex, similar to the mammalian cortex and
avian pallium. Previous studies reported that the reptilian
trilaminar cortex lacks neurons homologous to the mammalian
superficial layer neurons and that these neuronal subtypes
are an evolutionary innovation in the mammalian lineage17,18.
Currently, we do not have enough evidence concerning the
existence of a homologue of mammalian superficial layer neurons
in the reptilian cortex. Nevertheless, our data strongly suggest
that all amniotes share the developmental programme for
temporally ordered neuron subtype specification in the dorsal
part of the telencephalon.

These lines of evidence provide a possible scenario for the
multiple evolutionary steps towards convergent encephalization
in amniotes (Fig. 7). First, a temporally ordered neurogenic
programme has been acquired in the basal amniotes, and the
modification of this programme results in the elaboration of
lineage-specific cortical/pallial architectures. Interestingly, distinct
neuronal subtypes are spatially distributed in the gecko DCx, as in
the chicken pallium12,13. This similarity suggests that temporally
organized neurogenic programme in mammalian lineages had
evolved by the re-organization of spatially segregated neurogenic
programmes. However, Suzuki et al.13 also clarified that avian
pallial neural progenitors have a potential to produce multiple
neuronal subtypes sequentially in dissociated culture condition.
This finding suggests that the temporally regulated neurogenic
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system is the ‘default’ status that is derived from a common
ancestor(s) of amniotes. The spatial regulation of neurogenesis in
chicken is attributed to different proliferation kinetics, which
might be governed by local signalling molecules in the developing
telencephalon13,38.

We also hypothesized that changes in the regulation of neural
stem/progenitor cells, including the activation mechanisms of
Notch signalling, occurred in the ancestors of mammals and
archosaurs independently. Further changes in the proliferation of
apical progenitors and the emergence of basal progenitors might
have contributed to the massive neurogenesis and expansion of
the cerebrum in the mammalian and avian lineages. Although we
could not eliminate the possibility that unique characteristics of
gecko corticogenesis have been acquired secondarily, recent
reports support the convergent evolution of basal progenitors
(abventricular mitotic cells) in distinct lineages of amniotes39,49.
As a six-layered laminar structure in extant mammals and massive
elaboration of dorsal ventricular ridge in birds are highly
apomorphic brain traits50, analyses of reptilian cortical develop-
ment will provide further clues to understanding the changes in
the molecular mechanisms underlying the distinct styles of
amniote pallial architectures.

Methods
Animals. Adult Madagascar ground geckos (P. pictus, four males and four females)
were obtained from Kansai Reptile Pro (Osaka, Japan), and maintained in our
laboratory (14 h: 10-h light–dark cycles at 28 �C). After breeding, each female laid
two eggs every 7–10 days for several months, and a total of 192 eggs were ovi-
posited by four females. Fertilized eggs were collected and incubated at 28 �C in an
incubator until the stages of interest. Developmental stages in the geckos were
determined according to a previous report19. Fertilized eggs of Chinese soft-shelled
turtles were obtained from a local breeder (Daiwa Yoshoku, Saga, Japan), and
incubated at 28 �C. Developmental stages were determined according to a previous
report51. Fertilized chicken eggs were obtained from a local poultry farm
(Yamagishi Farm, Japan) and incubated at 37 �C. Pregnant female mice (CD-1
background, 3 months) were purchased from Japan Charles River Inc. All animal
experiments were approved by the Committee of the Kyoto Prefectural University
of Medicine.

Immunohistochemistry. Brains were fixed with 4% paraformaldehyde dissolved
in PBS at 4 �C for overnight. After washing with PBS, the brains were cryoprotected
with 30% sucrose solution and immersed in Tissue-Tek. Frozen brains were
sectioned at a thickness of 14–16 mm using a Cryostat (Leica CM1900 and CM1850,
Germany), and incubated with primary antibodies, including anti-Sox2 (rabbit
polyclonal, Abcam), anti-�III tubulin (1:100, mouse monoclonal, Millipore), anti-
phosphorylated histone H3 (1:200, rabbit polyclonal, Millipore), anti-Tbr2 (1:500,
rabbit polyclonal, Abcam), anti-PAX6 (1:500, mouse monoclonal, Developmental
Studies Hybridoma Bank), anti-GFP (1:500, rabbit polyclonal, Life Technologies or
rat monoclonal, Nakarai Tesque), anti-RFP (1:500, rabbit polyclonal, Abcam), anti-
RBP-Jk (1:2,000, rat monoclonal, Cosmo Bio), anti-CTIP2 (1:500, rat monoclonal,
Abcam), anti-SATB2 (1:200, mouse monoclonal, Abcam), anti-Tbr1 (1:200,
chicken polyclonal, Millipore) and anti-FoxP2 (1:500, rabbit polyclonal, Abcam)
antibodies. After washing, sections were incubated with secondary antibodies,
including Alexa-Fluor 488, 594 or 633-conjugated anti-rabbit, anti-mouse and anti-
rat antibodies (1:500, Life Technologies). For extensive amplification of signals, the
sections were incubated with biotinylated anti-rat or anti-rabbit antibodies,
processed with the Vectastain ABC Kit (Vector Laboratory) and treated with the
Tyramide Signal Amplification System (TSA system; PerkinElmer). The sections
were analysed with either a fluorescent microscope (BX51, Olympus) equipped
with a cooled CCD system (DP71, Olympus) or with a laser confocal microscope
(FV1000D, Olympus).

Determination of cell-cycle length. Cell-cycle length was determined by the
sequential administration of the distinct thymidine analogus, EdU and BrdU. First,
0.1 ml of EdU solution (10mgml� 1) was injected into the Pictus brain ventricle.
After 1.5 h, the same amount of BrdU solution (10mgml� 1) was injected into the
brain ventricle and incubated for 30min before fixation. EdU was detected by the
Click-iT EdU Detection System (Life Technologies), followed by immunostaining
with several antibodies. To detect BrdU-labelled cells, the sections were post-fixed
with 4% PFA for 30min before being treated with 2N HCl at 37 �C for 15min
(denaturation) and incubated with an anti-BrdU antibody (Life Technologies) that
specifically recognizes BrdU but not EdU.

Luciferase reporter assay. p4xCSL-firefly luciferase52, pCAGGS-Renilla
luciferase and pCAGGS-GFP vectors were co-electroporated into the developing
mouse, gecko and chicken cortices/palllia at various embryonic stages. Owing to
the limited accessibility and high mortality of embryos, early stages of mouse
embryos (E10) and all stages of gecko embryos were electroporated and cultured in
the whole-embryo culture system (Ikemoto Rika Kogyo; supplied with 95% oxygen
and kept at 37 �C for mice and 30 �C for geckos). After 1 or 2 days of in utero/ex
utero/in ovo electroporation, cortical/pallial tissues containing GFP-positive cells
were dissected out under a fluorescent microscope, and Notch reporter activity was
examined with the dual-luciferase reporter assay system (Promega). Chemical
luminescence was analysed with a micro-plate reader (2030 ARVO X,
PerkinElmer). All of firefly luciferase values were normalized with reference to
Renilla luciferase activities and multiplied by 106 to establish relative luciferase
units.

In ovo electroporation. In ovo electroporation of the developing gecko, turtle, and
chicken embryo was performed according to the method for quail embryos12.
Briefly, after cleaning the surface of the egg, a small window was opened in the shell
using fine forceps, and B0.1 ml of DNA solution was injected into the lateral
ventricle using a small glass needle. Needle-type electrodes (CUY200S, Neppa
Gene, Japan) were placed close to the injected area of the brain, and square pulses
(30V, 50ms, twice) were applied with an electric stimulator (Nihon Koden, Japan).
After electroporation, the extraembryonic cavity was filled with sterilized PBS
containing antibiotics (Gentamycin or Penicillin/Streptomycin), and the window
was sealed with a round cover glass to prevent drying out and microbe
contamination. Operated embryos were incubated at 28 �C under high humidity
until the necessary stages. To prepare the DNA solution, various expression vectors
including pCAX-GFP, pCAGGS-mRFP (a gift from Dr Uchikawa), pCIG-Cre,
pCMV-Brainbow1.0L (obtained from Addgene: ID18721), p12xCSL-GFP,
p4xCSL-firefly luciferase (obtained from Addgene: ID41726), pCAGGS-Renilla
luciferase (a gift from Dr De Pietri Tonelli), pNICD and pFuggie-dnRBPJ-ires-GFP
were dissolved in PBS (2.5–5 mgml� 1) containing 0.05% of Fast green.

In utero electroporation. In utero electroporation of mouse embryos was
performed with slight modification of previous methods53,54. Pregnant female
mouse was anesthetized by intraperinoneally injection of avertin, and incision was
made in the abdominal wall to expose uterus horn. DNA solution was injected into
the lateral ventricle of embryos, and square pulses (35V, 50ms, four times) were
applied to the embryos with a tweezer-type electrode (CUY650P3) connected with
the electric stimulator (Nihon Koden).
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