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Rapid tuning shifts in human auditory cortex
enhance speech intelligibility
Christopher R. Holdgraf1, Wendy de Heer2, Brian Pasley1, Jochem Rieger1, Nathan Crone3, Jack J. Lin4,

Robert T. Knight1,2,3 & Frédéric E. Theunissen1,2

Experience shapes our perception of the world on a moment-to-moment basis. This robust

perceptual effect of experience parallels a change in the neural representation of stimulus

features, though the nature of this representation and its plasticity are not well-understood.

Spectrotemporal receptive field (STRF) mapping describes the neural response to acoustic

features, and has been used to study contextual effects on auditory receptive fields in animal

models. We performed a STRF plasticity analysis on electrophysiological data from recordings

obtained directly from the human auditory cortex. Here, we report rapid, automatic plasticity

of the spectrotemporal response of recorded neural ensembles, driven by previous experience

with acoustic and linguistic information, and with a neurophysiological effect in the

sub-second range. This plasticity reflects increased sensitivity to spectrotemporal features,

enhancing the extraction of more speech-like features from a degraded stimulus and

providing the physiological basis for the observed ‘perceptual enhancement’ in understanding

speech.
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A
uditory perception encompasses a sequence of feature
extraction steps, with increasingly complex acoustic
features extracted at each stage of neural processing1,2.

Auditory neuroscientists have used synthetic and natural sounds
as stimuli while recording the neural activity of single auditory
neurons to investigate the nature of these computations.
This research has led to an understanding of cortical auditory
processing as a modulation filter bank3. At the level of
auditory cortex, sounds are decomposed not only in frequency
channels (as in the auditory periphery) but also in terms of joint
spectral and temporal modulations. The filters in this modulation
filter bank are the neurons’ spectrotemporal receptive fields
(STRFs)4–6. The decomposition of sounds into a modulation filter
bank facilitates many tasks, including the discrimination of
speech from non-speech7 and the extraction of communication
signals from noise8.

Several studies have examined a STRF-based feature represen-
tation at different levels of the auditory hierarchy5,9,10, but it is
less understood if and how these representations interact with
each other. For example, the presence of a higher-level response
(such as the recognition of task-relevant stimuli) may alter the
way that stimulus features are represented at lower levels in the
auditory processing stream11. It has been shown that the tuning
of auditory neurons changes during behavioural tasks12–15,
revealing that the STRFs describing this tuning are plastic.
Further, neuroanatomical16–18 and neurophysiological19,20

research have highlighted the importance of top-down
mechanisms for inducing such task-dependent STRF plasticity.
These results were all obtained from single-unit recordings
in animal models, and top-down manipulation was generally
modulated with active attentional manipulations or task-relevant
demands.

Human speech perception is another area in which top-down
and bottom-up mechanisms are in constant interplay21–23. The
act of understanding speech requires that auditory information
entering the auditory periphery is interpreted through the lens
of previous experience with natural sounds and language.
It is assumed that this experience plays a role in shaping the
cortical response to speech. Recent research using human
electrophysiology has shown that experience with sound or
contextual information about its content is correlated with
differing patterns of low-frequency activity in both auditory and
premotor cortex. For example, activity in the theta band of neural
signals is reported to track the temporal structure in the speech
envelope24–26 and this tracking increases as noise levels are
decreased in the speech stimulus27. In addition, power in theta
and beta frequency bands have been implicated in top-down
processing during speech perception25. It has been suggested that
these signals reflect the brain’s attempt to find relevant
information in the speech signal, and to filter out noise or
competing auditory streams28. While these approaches delineate
differing patterns of neural activity that reflect top-down
processes, they do not quantify changes in the spectrotemporal
tuning of cortical activity, a feature representation that is believed
to be encoded in auditory cortical neurons.

To investigate how contextual effects modulate auditory
cortical activity, it is necessary to investigate the feature
representations that are encoded in auditory brain areas.
STRF models have been used as a standard for characterizing
the tuning of neurons in primary auditory cortex2. Recent
research has shown that STRF modelling may be applied
to human electrocorticography (ECoG) to characterize the
spectrotemporal tuning of cortical sites in response to
speech29–31 and to investigate plasticity in the auditory cortical
response32. In particular, the high-frequency broadband (HFB;
70–150 Hz) component recorded with ECoG has both the spatial

resolution to localize activity to discrete regions of the brain, and
the temporal resolution to resolve excitation by the fine grained
patterns of acoustic features.33,34. This permits using HFB activity
to study the representation of spectrotemporal speech features in
human auditory cortex and investigate how this representation
changes during language processing.

Here, we perform a passive listening speech task in ECoG
subjects. In this task, subjects hear degraded speech before and
after experience with an unfiltered speech context. We first
document that perceptual enhancement to the degraded sound is
boosted after experience with the unfiltered speech, enabling
speech comprehension. We then use STRF modelling techniques
to investigate if this perceptual enhancement coincides with a
shift in auditory cortical tuning to spectrotemporal speech
features. We use regularized regression techniques to estimate a
STRF for each recording electrode. It is estimated that the HFB
activity of a single electrode reflects the activity of hundreds of
thousands of neurons35,36. Thus, we effectively calculate an
ensemble spectrotemporal receptive field, which we refer to as an
eSTRF. We subsequently use this acronym to explicitly
distinguish our results from those obtained with single auditory
units. We show that providing an unfiltered speech context before
a degraded speech stimulus causes an automatic, rapid shift in
auditory cortical eSTRFs, enhancing their sensitivity to speech
features. These findings provide evidence of an automatic
mechanism in which experience with a contextually appropriate
speech sentence causes behavioural perceptual enhancement for
subsequent degraded speech signals, along with a tuning shift
towards speech-specific spectrotemporal auditory features in
auditory cortical areas.

Results
ECoG behavioural task. A passive listening filtered speech task
was used to study the neural response to degraded speech before
and after hearing an unfiltered speech context. Filtered speech
stimuli were created by filtering out portions of the modulation
power spectrum (MPS) of each sentence (see Fig. 1, Methods;
and Supplementary Audio 1) with low-pass filters. The corner
frequency of each filter was chosen to render speech unintelligible
by removing key spectral or temporal modulations37. ECoG
subjects (n¼ 7) heard a filtered version of a speech utterance
(hereafter described as the BEFORE condition), followed by an
unfiltered version of the sound (MIDDLE condition), and finally
by a repetition of the filtered version (AFTER condition). The
first filtered speech presentation is incomprehensible, while the
second filtered speech presentation is understandable due to
experience with the unfiltered speech context. See Fig. 2 for a
description of task design.

Behavioural control study. Due to limitations of the ECoG
recording environment, it was not possible to obtain behavioural
response data from ECoG patients, and a separate task was per-
formed on control subjects to validate and quantify the perceptual
effects generated in our stimuli sequences. In one task, subjects
heard a single filtered version of each stimulus (with no unfiltered
speech context), and were asked to type any words that they
understood. The per cent correct was calculated for each sen-
tence. Without any unfiltered speech context, subjects recognized
3.5±0.4% of filtered speech words, replicating previous
studies with the same filtering technique37. In a second task,
subjects listened to filtered speech sentences along with a number
of different context sentences, mimicking the ‘filtered-unfiltered-
filtered’ structure of the behavioural task that the patients
performed. Subjects typed out any words that they understood
after the second presentation of the filtered speech sentence.
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Without any context, subjects understood 4.53 ±0.82% words.
When they were given a contextual sentence that was different
from the filtered speech sentence, subjects understood
10.5±1.3% words, representing the perceptual enhancement
due to stimulus repetition or general activation of auditory
streams involved in the processing of intact speech. When the
contextual sentence was the same sentence as the filtered speech,
subjects understood 77.7±1.5% of words. As such, there was a
roughly 67.2% increase in comprehension relative to hearing a
different contextual sentence, representing the perceptual
enhancement we focus on in this paper (two-sample t-test,
P¼ 1e� 5, df¼ 16). This perceptual enhancement reflects
multiple speech processes, including the recent activation of the
auditory stream in response to clean speech (as in the different
sentence case) as well as the activation of cognitive areas involved
in language processing resulting from speech comprehension
(Fig. 2; Supplementary Fig. 1).

HFB activity. All analyses in this study were based on the HFB
activity (70–150 Hz) of electrocorticographic (ECoG) recordings.
This HFB signal is characterized by an increase in power across a
large range of frequencies, and reflects local neuronal firing

within B2 mm of each electrode, representing the combined
activity of B500,000 cortical neurons33,36. HFB can provide low-
noise single trial evoked responses (see Fig. 6, as well as
Supplementary Movies 1 and 2) that has been used for speech
decoding and encoding models in humans31,32, making it a good
candidate for STRF modelling (Supplementary Fig. 4).

To define speech-selective electrodes, the mean post-stimulus
HFB activity was first calculated for every speech trial. For each
electrode, we used standard bootstrapping methods to calculate a
bootstrap distribution of its mean evoked HFB activity across
trials. The 0.5th percentile of this distribution was then calculated
as a lower bound on post-stimulus activity (corresponding to a
99% confidence interval). This process was repeated for each
electrode, and electrodes with a lower bound greater than 0 were
defined as speech-selective. A subset of electrodes in each subject
had significant responses to speech stimuli over baseline
(confidence interval test across trials, see Fig. 3), generally
centred around perisylvian regions. These electrodes are subse-
quently called speech-responsive (Speech-R) and made up 92 of
468 total electrodes (19.6%, see Supplementary Fig. 2). It should
be noted that these electrodes did not show significant changes in
activity over the course of the entire session (Supplementary
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Figure 1 | Stimulus creation by filtering MPS. (a) The MPS describes the oscillatory patterns present in a time-frequency representation of sound.

Left, the spectrogram of unfiltered speech is shown. Right, the MPS (calculated from a 2D FFT) is shown. Patterns in the spectrogram are reflected

as power in temporal or spectral axes of the MPS. Rapid spectral fluctuations (for example, harmonic stacks from pitch, (1)) are represented near the

middle/top of the MPS. Rapid temporal fluctuations (for example, plosives, (2)) are represented near the bottom/sides of the MPS. Joint spectral/temporal

fluctuations (for example, rising pitch and phoneme changes, (3)) are represented in the upper corners of the MPS. (b) Left column: Filtered speech was

created by filtering either spectral (top) or temporal (bottom) regions of the MPS space. MIDDLE column: spectrograms of the resulting filtered speech is

shown. Right column: re-calculating the MPS on the filtered speech spectrogram shows that the MPS is now lacking power in the filtered regions.
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Fig. 5B), matching the finding in control subjects that behavioural
responses did not substantially change over the course of a
session (Supplementary Fig. 5A).

For all Speech-R electrodes on temporal and perisylvian cortex,
the mean difference in HFB activity between the BEFORE and
AFTER conditions was estimated. There was a significant increase
in HFB activity in the AFTER condition (cluster-based permuta-
tion test, P¼ 0.003, see Fig. 2b). This increase in activity could
reflect sentence independent changes in arousal (for example,
increased HFB activity to any auditory stimuli), or changes due to
the activation of speech and language network resulting in a shift
in gain or tuning of speech features in the degraded signal.
However, only changes in tuning would lead to sentence-specific
(and in our experimental paradigm, trial by trial) effects. For
subjects that also had pink noise control trials, there was no
difference in evoked HFB activity between the AFTER and
BEFORE conditions (Supplementary Fig. 3A).

Between-condition HFB coherence. We next investigated
whether the difference between the BEFORE and AFTER
condition was only reflected in an overall increase in HFB
amplitude or if there was also a difference in the time-varying
details of each response. We hypothesized that HFB activity in
the AFTER condition would be more similar to the activity in
the MIDDLE condition (AFTER/MIDDLE) compared with the
BEFORE condition (BEFORE/MIDDLE) on a trial by trial basis
(that is, for individual sentences). This would provide evidence
that speech-responsive electrodes responded to features in the
filtered speech stimulus that were also present in the unfiltered
speech context stimulus.

The time-varying coherence between the BEFORE/MIDDLE
and AFTER/MIDDLE HFB activity in each trial was estimated to
quantify the similarity in the responses. The between-condition

coherence for successive windows of 400 ms was calculated to
evaluate the time course of evoked HFB similarity for each trial,
then averaged across trials to calculate the coherence for each
time bin between the BEFORE/MIDDLE and AFTER/MIDDLE
conditions for each electrode over perisylvian cortex. The
coherence between AFTER/MIDDLE was higher than the
coherence between BEFORE/MIDDLE, indicating it was not
only the mean amplitude, but also the time-varying activity that
was changing from BEFORE to AFTER (permutation test,
P¼ 0.006, n¼ 78; see Fig. 3, bottom row for all comparisons).
These differences in coherences could still be due to an overall
change: the time-varying response averaged across all trials/
sentences could be more similar to the MIDDLE (clean speech)
condition in the AFTER than the BEFORE condition. This could
happen if speech intelligibility resulted in simple changes in gain
or if the response as measured in HFB activity to intelligible clean
speech was invariant across sentences. This increase in similarity
would then be reflected in individual trial responses and result in
increases in our coherence estimates. However, in electrodes for
which the HFB response is sensitive to spectrotemporal features
of sounds, one could expect to find an additional time-varying
response that is sentence-specific. To distinguish global changes
from changes in sentence-specific responses, the same between-
condition coherence analysis was performed after subtracting the
time-varying averaged HFB response across all trials/sentences
for each electrode. After subtracting this global response in each
electrode, a significant increase in coherence between the
responses in the AFTER/MIDDLE conditions remained (Fig. 4).
This finding shows that the time-varying and sentence-specific
response in each trial in the AFTER condition becomes more
similar to the corresponding response to the unfiltered speech
found in the MIDDLE condition and the effects are not simply
due to global enhancement in neural activity.
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Figure 2 | Behavioural task and speech intelligibility results. (a) Trials consisted of three steps: BEFORE, MIDDLE and AFTER. In the first step called

BEFORE (left column), subjects heard a filtered speech stimulus that lacked the key modulations for speech intelligibility. Stimuli were filtered either with a

spectral modulation filter (top), removing spectral envelope modulations above 0.5 cycles/kHz or a temporal modulation filter (bottom), removing

temporal envelope modulations above 3 Hz (see ‘Methods’ section). In the second step called MIDDLE (centre column), subjects heard the unfiltered

version of the spoken sentence. A subset of three subjects had a 50% chance of hearing either the unfiltered version or pink noise with a matched

frequency power spectrum. In the third step called AFTER (right column), the same filtered speech stimulus was repeated. Subjects attended to a fixation

cross presented during each stimulus and passively listened to the presented sounds. (b) In a separate behavioural task, non-clinical subjects were asked to

type any words they heard after the first filtered speech presentation (BEFORE and here labelled no context), after a filtered speech sentence that followed

a different unfiltered sentence (AFTER with wrong context), or after a filtered speech sentence that followed the matching unfiltered sentence (AFTER with

right context). Mean±s.e. % words correct is shown. More details and results obtained using other contextual stimuli to further explore the stimulus

information required for the perceptual enhancement can be found in Supplementary Fig. 1 and ‘Methods’ section.
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eSTRF modelling. If the changes in the pattern of HFB activity in
the AFTER condition relative to the BEFORE condition are
related to increased speech comprehension, the AFTER activity
should be more similar to the one found in response to clean
speech, just as was observed. To further investigate this hypoth-
esis, we next calculated the eSTRFs of all active temporal cortex
electrodes to detect if they exhibited tuning plasticity related to an
increase in speech comprehension. We estimated eSTRFs from
stimulus-response (HFB) signals in each condition (BEFORE,
MIDDLE and AFTER). We hypothesized that, relative to the
BEFORE condition, eSTRFs in the AFTER condition would shift
to be more responsive to unfiltered speech features, providing a
potential mechanism for extracting speech-like features from
sound and the perceptual enhancement.

eSTRF models were fit for each electrode using a jackknife
approach. On each iteration one trial was left out and the
model was fit on the remaining trials. The held-out trial was then
used to estimate a goodness of fit (here the coefficient of
determination, R2) and its 99% confidence intervals. Electrodes
with a confidence interval that did not overlap with 0 were
considered to be electrodes ‘well-modeled’ by the STRF and called
STRF-responsive (STRF-R) electrodes. This yielded 53 of 468
total electrodes (11.3%, see Supplementary Fig. 2). The STRF-R
electrodes were also generally localized on perisylvian temporal

lobe regions (see Fig. 5 for anatomy and Fig. 6 for model score
distribution).

The coefficients of each eSTRF model (that is, the spectro-
temporal gains) were analysed to investigate the nature of the
specific spectrotemporal tuning of each electrode. To be included
in subsequent analyses, an electrode had to: (1) show evoked HFB
activity in response-to-speech (Speech-R, described above and
shown in Fig. 3); (2) be well-modeled by spectrotemporal features
(STRF-R, described above and shown in Fig. 5), and (3) be
located on the temporal lobe or perisylvian cortex, regions
traditionally associated with spectrotemporal auditory proces-
sing31,32,38. This yielded 41 of 468 total electrodes (8.76%, see
Supplementary Fig. 2).

Peaks in the eSTRFs were distributed across a wide range of
frequencies, and eSTRFs were not well-characterized by simple
shapes (for example, Gabor functions) as seen in typical single-
unit STRFs39,40. This is likely due to the fact that the HFB activity
represents the combined ensemble firing of many thousands of
neurons in cortical columns36 (see Fig. 7 for examples). Sparser
eSTRFs have also been obtained from ECoG and single-unit data
using different regularization techniques29,41.

Shifts in eSTRF modulation related to speech intelligibility. To
compare the spectrotemporal features present in speech with
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n¼ 92, see ‘Methods’ section). (c) Electrode coverage and average HFB activity for each subject. Electrode colours/sizes represent the mean evoked HFB
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were included in eSTRF analyses.
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those extracted by the eSTRF, we next estimated the gain of the
eSTRF in the spectral and temporal modulation domain: the
eSTRF modulation transfer function (MTF). The MTF shows
which temporal amplitude modulations, which spectral envelope
modulations, and which joint spectrotemporal modulations are
emphasized (and equivalently attenuated) in the neural response.
The MTF can be compared with the MPS of speech to evaluate
the match in tuning between the stimulus (here speech) and
the neural filters (see ‘Methods’ section as well as refs 40,42). The
average MTF functions obtained over all of our electrodes for the
BEFORE and AFTER condition are shown in Fig. 8. Qualitatively,
one can observe that these MTFs are matched to the speech MPS
shown in the figure. Moreover, the MTF of the shift in eSTRF
(AFTER–BEFORE) averaged across all electrodes emphasizes the
region of the MTF that was both preserved in the filtered speech
and shown to be essential for speech intelligibility37, suggesting
that the observed eSTRF plasticity could facilitate speech
perception (Fig. 8).

Filtered speech eSTRFs increase response to speech features.
We conducted two additional analyses to quantitatively
determine whether the AFTER eSTRFs became more sensitive to
unfiltered speech features. First, we assessed whether the eSTRF
in the AFTER condition was more sensitive to unfiltered speech
features than the eSTRF in the BEFORE condition. Each filtered
speech eSTRF (BEFORE and AFTER) was used to calculate a
predicted response to unfiltered speech. The magnitude of this
predicted response reflects the extent to which the eSTRF extracts
spectrotemporal features that are present in the input stimulus,
in this case unfiltered speech. The root-mean-squared power
(RMS) of the output in the BEFORE and AFTER condition was

calculated and compared for each electrode: the power in the
AFTER condition was higher than power in the BEFORE
condition (mean RMS increase 0.12±0.03, P¼ 0.0001, n¼ 41;
see Fig. 9).

Next, we used the eSTRFs fit on the unfiltered speech MIDDLE
condition to predict HFB activity in the BEFORE and AFTER
conditions. The predicted HFB activity was compared with the
true HFB activity to assess how well the unfiltered eSTRF
characterized the mapping from acoustic features to neural
activity. Larger goodness of fit (R2) values indicate that the
mapping of sound features onto HFB activity is more similar to
that of the unfiltered speech condition. Goodness of fit scores
were higher for the AFTER condition compared with the
BEFORE condition (mean R2 improvement 0.05±0.01,
P¼ 0.0001, n¼ 41; see Fig. 9).

Taken together these results together show that the tuning of
electrodes in the AFTER condition becomes more similar to
tuning acquired in response to unfiltered speech. Moreover,
this shift in tuning causes the eSTRF to be more responsive to
speech-like features of the stimulus.

Filtered speech eSTRF shifts overlap with MIDDLE eSTRFs.
Finally, to directly compare the spectrotemporal tuning between
conditions, we calculated the similarity between eSTRFs obtained
in each condition using partial correlation (see ‘Methods’
section). Partial correlation measures the correlation between two
variables after removing the linear relationship with a third
variable. The partial correlation between the eSTRFs in the
BEFORE/MIDDLE conditions was estimated after taking into
account the eSTRF from the AFTER condition, and vice-versa.
Partial correlations between AFTER/MIDDLE were higher than
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between BEFORE/MIDDLE (Fig. 10a,b; mean partial correlation
improvement 0.18±0.001; P¼ 0.001, n¼ 41, permutation test)
indicating that eSTRFs obtained with degraded speech shifted to
become more like the eSTRFs obtained with intelligible speech.
The majority of the increase in partial correlation is located
around the superior temporal gyrus (STG) (Fig. 10c), a region
shown in previous research to respond to spectrotemporal fea-
tures in many sounds30–32,38. Moreover, the increase in eSTRF
similarity was itself correlated with the evoked HFB amplitude
(Pearson’s r, P¼ 0.007, see Fig. 10b). For subjects that also had
pink noise control trials, there was no difference in partial
correlation between the BEFORE and AFTER condition
(Supplementary Fig. 3B).

Connectivity analysis. We also examined whether the observed
eSTRF plasticity was correlated with changes in functional

connectivity measured across electrodes, providing initial clues
for whether the tuning shifts could be driven by top-down effects.
For this purpose, we calculated the coherence of the HFB
amplitude between the electrodes included in the eSTRF analysis
and groups of electrodes either in temporal or frontal/premotor
cortex. There was a small significant increase in coherence
in the AFTER condition relative to the BEFORE condition.
Moreover, the coherence in the AFTER condition was closer to
that obtained with the unfiltered speech (Supplementary Fig. 6A;
Supplementary Methods). These results suggest that there may be
changes in functional connectivity that are consistent with a state
in the AFTER condition that is closer to the one found during the
perception of intelligible speech, potentially explaining the
observed changes in the tuning eSTRF for speech-like features.
This amplitude coherence analysis does not, however, reveal the
direction of the effect and it is also possible that the changes in
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auditory tuning cause the observed changes in functional
connectivity.

To examine potential directional effects, we also calculated the
phase amplitude coupling (PAC) between the phase of the ECoG
signal in the 3–8 Hz from electrodes in frontal/premotor regions
and the HFB amplitude for electrodes included in the eSTRF
analysis in auditory cortex (Supplementary Fig. 6B). We used
frequencies from 3 to 8 Hz for the phase calculation as it has
been suggested that phase in this frequency range may track
the envelope of a perceived speech stimulus and that the
low-frequency signal could drive responses in higher
frequencies24,27,43. In this analysis, however, we did not find
significant inter-region cross-frequency activity that was
modulated by task condition. Moreover, an analysis that
quantified the relationship between low-frequency theta phase
and the envelope of the speech utterance also did not show any
differences between the BEFORE and AFTER conditions
(Supplementary Fig. 7).

Thus, although changes in functional connectivity were
measured both within the temporal lobe and between the
frontal cortex and the temporal lobe, we are unable at this
point to distinguish top-down from local or bottom-up
effects. Additional experiments with greater coverage of
frontal neural activity and additional analyses are required to
determine the direction of the information flow that drives
the observed plasticity in the temporal lobe and perisylvian
region.

Discussion
After hearing an intact sentence, subjects understand a sub-
sequent noisy version of the same sentence that was previously
unintelligible. This robust perceptual enhancement is character-
ized by an increase in HFB activity, onsetting within 300 ms and
sustained throughout the speech utterance. Moreover, the time-
varying HFB activity becomes more similar to activity during
passive listening to unfiltered, intact speech, providing evidence
that auditory electrodes shift how they track the time-varying
properties of the filtered speech. Finally, a spectrotemporal
analysis of human auditory cortical speech responses (eSTRFs)
shows that the perceptual enhancement due to exposure with
intact speech is paralleled by a shift in spectrotemporal tuning in
auditory cortical areas. This shift in tuning overlaps with speech
features, making the cortical population more responsive to
unfiltered speech.

These results provide novel evidence that experience with
language rapidly and automatically alters auditory representa-
tions of spectrotemporal features in the human temporal lobe.
Rather than a simple increase or decrease in activity, it is the
nature of that activity that changes via a shift in receptive fields.
This has implications for encoding models of sound features in
human/animal models, as well as in theories of top-down
auditory processing. There have been attempts to characterize
the neural response-to-speech under attention-based manipula-
tions. For example, Mesgarani and Chang32 used a decoding
approach to estimate the spectral representation of sound in the
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auditory cortex during a task in which subjects attended to one of
two utterances being played simultaneously. The authors reported
that the decoded spectrogram became more similar to the speech
stream that was being attended to, suggesting plasticity in the
information encoded in cortical electrodes. This effect may be due
to enhancing the gain of specific filter channels in the auditory
cortex, as we have observed here. The tuning shift can be
interpreted as a ‘spectrotemporal prior’ over incoming sounds,
priming auditory cortical neurons to respond to particular
speech-like qualities. This interpretation is compatible with
higher-level theories of categorical (or probabilistic) speech
representation, such as perceptual warping44.

Relatively rapid changes in auditory STRFs have also been
demonstrated in animal models. Research that showed task-
dependent plasticity in auditory STRFs was initially performed in
ferrets that were trained to detect target pitches in a go/no-go
task15. More recently, it was shown that these auditory STRFs
were dynamic and shifted due to concurrent top-down and
bottom-up demands that depended on particular behavioural
tasks19. This idea is supported in the current study, which
revealed rapid cortical plasticity due to the knowledge of
high-level auditory features. There have also been studies in
animal models that report an invariance to signals embedded in
different levels of background noise. For example, Rabinowitz
et al.12 showed that neurons higher in the cortical hierarchy were
more invariant to noise levels. They proposed two separate
adaptive gain mechanisms by which neurons separate signal from
noise to be more sensitive to relevant stimulus features. Similarly,
in our study, the perceptual enhancement coming from

experience with unfiltered speech could be thought of as a kind
of ‘signal enhancement’ in which high-level information causes
neurons to vary their gain to experience a signal with less noise.

How single-unit STRFs combine to form an ECoG electrode
eSTRF is an important next step to bridge the gap between the
animal and human literature and advance our understanding of
the neural mechanisms that can drive this cortical STRF
plasticity. Given the dependence of the behavioural effect on
linguistic attributes, we predict that this rapid, automatic shift in
the eSTRF originates at least in part from top-down signals in
higher-level regions that are part of the language network such as
auditory association areas45–48, or in ‘non-auditory’ regions such
as the inferior frontal gyrus or premotor cortices49.

A prior ECoG study suggested that delta-theta power
entraining may provide a mechanism for using temporal
structure of the sound to ‘chunk’ relevant auditory streams and
facilitate speech processing50. This theta power entraining might
originate in prefrontal cortex and affect lower auditory areas.
Although we found functional connectivity effects that were
modulated by the task condition, we did not detect inter-regional
PAC changes that could provide more substantial evidence for
direction of the information flow. Future research with joint
frontal/temporal coverage will be needed to explicate the origin of
putative top-down processes (for example, from frontal regions)
that might contribute to eSTRF plasticity.

In summary, in this study we demonstrate rapid spectro-
temporal plasticity while subjects listened to both normal and
degraded speech. We show that the human auditory cortical
map is highly dynamic and context dependent, and highlight
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the importance of studying sensory cortical responses with
behaviourally relevant, naturalistic stimuli2. The dynamical
changes observed in these sensory maps are dependent on a
spectrotemporal prior related to high-level speech features that
increases speech signal identification, enabling perception of a
stimulus that was previously incomprehensible.

Methods
Participants and data acquisition. Electrocorticographic (ECoG) recordings were
obtained using subdural electrode arrays implanted in seven patients undergoing
neurosurgical procedures for epilepsy (age 22–51; 4F/3M). Recordings took place at
the University of California at Irvine (UCI), Columbia University (CU) and John
Hopkins University (JH). All patients volunteered and gave their informed consent
before testing, and this research was approved by the Committees for the
Protection of Human Subjects at UC Berkeley, UC Irvine and the Johns Hopkins
Medical School. Grid placement was determined entirely by clinical criteria
(see Fig. 3 for reconstructions of subjects). Electrode grids had spacing from
5–10 mm (Adtech grids), with the following numbers of channels: JH: (48, 64),
IR: (68, 68, 62), CM: (110, 104).

Multi-channel ECoG data were amplified, analog-filtered above 0.01 Hz, and
digitally recorded with a sampling rate of 1 KHz (JH, CU) or 5 KHz (UCI). All

channels were subsequently down-sampled to 1 KHz, corrected for DC shifts, and
band pass filtered from 0.5 to 200 Hz. Notch filters at 60, 120 and 180 Hz were used
to remove electromagnetic line noise. All filters were zero-phase IIR filters
implemented with the MNE-python toolbox51. The time series were then visually
inspected to remove time intervals containing periodic spiking discharges and
generalized spiking due to ictal activity. All epileptic channels, as well as channels
that had excessive noise including broadband electromagnetic noise from hospital
equipment and poor contact with the cortical surface, were removed from analysis.
Finally, electrodes were re-referenced to a common average.

Brain mapping of electrodes. Each subject had post-operative anterior-posterior
and lateral radiographs, as well as computer tomography (CT) scans to verify grid
locations. Three-dimensional cortical models of individual subjects were generated
using pre-operative structural magnetic resonance (MR) imaging. These MR
images were co-registered with the post-operative CT images using Curry software
(Compumedics, Charlotte, NC, USA) to identify electrode locations. Cortical
activation maps were generated using custom Python software.

ECoG filtered speech passive listening task. ECoG subjects performed a passive
listening task that consisted of 50–60 trials. In a single trial, the subject fixated on a
cross in the middle of a laptop screen. Three sounds were played successively
through laptop speakers. These followed the pattern ‘filtered speech (BEFORE)-4
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unfiltered speech (MIDDLE)-4 filtered speech (AFTER)’, and the speaker/content
of the sentence was always the same within a single trial. However, no sentence was
repeated within the same subject. Each stimulus was 2–5 s long. The inter-stimulus
interval was randomly chosen between 0.5 and 1.5 s on each presentation, resulting
in a trial length of 12–16 s.

In three ECoG subjects, a pink noise control trial was added to test for the effect
of filtered speech repetition on electrode tuning. In these trials, the unfiltered
speech context (middle sound presentation) sentence was replaced with energy-
matched pink noise. This trial type made up 50% of trials in these subjects. Trials
were conducted using the PsychoPy open-source toolbox52.

Behavioural controls for filtered speech. Time constraints in the epilepsy ICU
environment precluded detailed behavioural assessment of ECoG patients, though
post-test, patients typically reported a perceptual enhancement after hearing the
unfiltered speech stimuli. An additional behavioural experiment was conducted to
assess the degree of perceptual enhancement after hearing the unfiltered speech
using different kinds of MIDDLE context sentences. Subjects were divided into
three groups. Each subject was asked to listen to speech sentences (explained
below) and to type out any words they understood. The mean percentage of words
for each sentence was calculated for each subject, and then compared across groups
with an unpaired t-test. The first group (n¼ 5) replicated previous intelligibility
experiments using the same stimulus set37. Filtered sentences were presented to
subjects. After each presentation, subjects were asked to type any words that they
could understand, and the per cent correct of sentence words detected was
calculated.

The second group (n¼ 9) was used to control for the effect of stimulus
repetition, as well as general changes in arousal due to hearing unfiltered speech.
Subjects were presented with the same trial structure used in the ECoG recordings.
The BEFORE/AFTER stimuli were always the same filtered speech sentence, and
the MIDDLE stimuli was either an unfiltered version of the same sentence or of a
different sentence. Using a different sentence in the MIDDLE tests for an effect of
filtered speech repetition, as no linguistic or acoustic context matches the filtered
speech sentence. Using the same sentence in the MIDDLE elicits the same
perceptual enhancement effect reported in ECoG subjects. Subjects were again
asked to type as many words as they understood and the mean per cent correct is
reported. The third group of subjects (n¼ 15) was used to test linguistic versus
acoustic stimulus features on the perceptual enhancement effect. Subjects
performed the same task as group 2. However, now the filtered speech context
sentence was either the same sentence spoken by a different-gendered speaker, or a
different sentence spoken by the same speaker. This provides a coarse split between
acoustic context (same speaker, different sentence) and linguistic context (same

sentence, different speaker). Subjects were again asked to type any words they
understood.

Filtered speech sound creation. Filtered speech was created using a MTF applied
to the joint Spectral-Temporal Modulation Spectrum of the individual speech
sentences as described in ref. 37. This filtering allows one to remove particular
frequencies in the joint spectrotemporal envelope of the sound. Briefly, the raw
sound waveform is first converted into a time-frequency representation
(a spectrogram). Then, a two-dimensional (2D) Fourier transform of the sound
spectrogram converts this representation into a domain that describes the spectral
and temporal modulations that are present in the spectrogram.

The temporal modulations correspond to fluctuations of the amplitude
envelope of the sound such as those produced by words and syllables, while the
spectral modulations correspond to both coarse (such as speech formants) and fine
(such as the harmonics from glottal pulse) repeated structures found along the
frequency axis (see Fig. 1 for a visual explanation).

Once the sound has been transformed to this space, the gain of a large portion
of frequency modulations (spectral filter) or temporal modulations (temporal filter)
is set to 0 (the phase modulation spectrum is left untouched, see Fig. 1 for filtering
procedure examples and Fig. 2 for spectrogram examples). This filtered MPS is
converted to a spectrogram using an inverse 2D Fourier transform, and finally back
into a time-varying sound wave using a recursive algorithm that selects the
appropriate phase shift for each frequency band and recovers the unique sound
that corresponds to that spectrogram37. The result is a stimulus that sounds
speech-like, but is incomprehensible to the naı̈ve listener. Note that the overall
frequency power spectrum of the modulation-filtered sounds is unchanged: it is the
same as the unfiltered sound.

In this study, two filters were used: a low-pass filter of spectral modulations (0.5
cycles/kHz), and a low-pass filter of temporal modulations (3 cycles/Hz). The
parameters of these filters were chosen to remove respectively the spectral structure
or the temporal structure that is key for speech comprehension37.

Neural and auditory feature extraction. Our primary analysis consisted of fitting
a linear model that predicted patterns of ECoG HFB amplitude as a function of
spectral features. Auditory features (inputs to each model) consisted of time and
frequency varying amplitudes based on psychoacoustic and physiological studies of
language processing3. This ‘auditory spectrogram’ was obtained by estimating the
amplitude envelope for 128 narrow-bands generated by a bank of erb-spaced
gammatone filters ranging from 180 to7,000 Hz. To obtain the envelope of each
narrow-band signal, the output of the filter is half-wave rectified, followed by a
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non-linear compression, and spectral sharpening. Finally, the output of each
frequency band was passed through a leaky integrator with a time constant of 8 ms
(details on the feature extraction can be found in ref. 3). The 128 acoustic
frequencies of the initial spectrograms were subsequently down-sampled to
32 frequency bands to reduce dimensionality and computational load.

Neural activity (outputs of the model) consisted of the envelope of the HFB
activity of each electrode. A window around 21 centre frequencies were defined
from 70 to 140 Hz, with the width of each window increasing semi-logarithmically
with frequency, following previous studies in ECoG encoding models53. The raw
ECoG signal was first band pass filtered for each window using a zero-phase IIR
filter. Then, the amplitude of the band-passed signal was calculated as the modulus
of the Hilbert transform of the signal. Finally, the amplitude for each centre
frequency was averaged together to attain a single time-varying estimate of HFB

activity53. Before estimating the linear filter, the audio spectral representation and
the neural HFB response were down-sampled to 50 Hz.

Evoked HFB and speech-responsive electrodes. For electrode selection,
we baselined each trial using times � 800 to � 100 ms relative to sound onset.
We then calculated the mean post-stimulus activity in each trial. This yielded a
single value for evoked HFB activity per trial/condition. For each condition, 99%
confidence intervals on mean evoked activity across all trials were obtained by
bootstrapping. Electrodes whose lower bound (bootstrapped 0.5th percentile) were
greater than 0 in response to unfiltered speech were considered Speech-R
electrodes.

To test for differences in mean HFB activity between conditions, the difference
in time-varying HFB activity in each trail was calculated and then averaged across
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trials to obtain a single ‘difference time-varying HFB activity pattern’ per electrode.
Significance (the null hypothesis being no difference AFTER–BEFORE) was
estimated using a cluster-based permutation test that corrects for multiple
comparisons and computes statistics at the cluster level54.

Between-condition coherence. The similarity in HFB activity between each
filtered speech condition (BEFORE/AFTER) and the unfiltered speech condition
(MIDDLE) was assessed by the measure of coherence. Coherence was chosen
instead of the cross-correlation coefficient because of its robustness to high-
frequency noise and invariance to systematic phase delays between signals. Similar
results were obtained with correlation coefficient analysis (results not shown) but
the correlation coefficient calculation requires additional assumptions on the
relevant temporal scale of analysis related to the low-pass filtering needed to extract
the lower frequency signals from the higher frequency noise. In the coherence
calculation, the estimation of this relevant time scale is implicitly performed in a
data driven manner, as the signal-to-noise is estimated for each frequency. The
integral of the coherence (expressed here in bits s� 1 and shown in Fig. 4) yields
then a measure of overall similarity for two time-varying signals55. For each
stimulus, the time-varying coherence between the BEFORE/MIDDLE conditions,
and between the AFTER/MIDDLE conditions was estimated using a multi-taper
windowing function56 for all the trials. The coherence was calculated for a sliding
window of 400 ms moving in 200 ms steps from � 500s to 2,500 ms, relative to
stimulus onset. Unbiased estimates of the coherence for each window were
obtained using a jackknife method. To compare overall coherence across
electrodes, coherence was converted to normal mutual information (in bits s� 1),
an information theoretic representation that allows for the integration of the
coherence across frequency bands55, which takes the following form:

M Inorm¼
Z

f
log2ð1� cohðf ÞÞdf

The mean±s.e. time-varying integrated coherence (in bits s� 1) was calculated
across electrodes for each pair of conditions (BEFORE/MIDDLE and AFTER/
MIDDLE). Statistics are performed for windows of interest on the mean difference
in coherence between AFTER/MIDDLE and BEFORE/MIDDLE (Fig. 4). Code for
performing the trial-to-trail coherence can be found in the ‘Data availability’
section.

eSTRF model formulation. Three eSTRFs were fit from the data obtained
from each electrode: one using audio from the BEFORE trials, one using MIDDLE
trials, and one using AFTER trials. This allowed for the comparison of eSTRFs
coefficients from one trial type to the next.

The eSTRF is an encoding model that describes the linear mapping between the
speech spectrogram and the HFB activity. It models the HFB signal as a weighted
sum of the amplitude at each frequency band and for a range of points in time as
follows:

R̂ t; nð Þ ¼
X
t

X
p

g t; p; nð ÞSðt� t; pÞ

where S(t� t, p) is the estimated speech representation for the frequency band p at
time lag (t� t), with t being a time lag ranging between 0 and 400 ms. bRðt; nÞ is the
estimated HFB neuronal response of electrode n at time t. Finally, g(t, p, n) is the
linear transformation matrix (or set of eSTRFs), which depends on the time lag,
feature of interest, and the electrode being predicted.

To obtain the eSTRF, a regularized linear regression algorithm was used.
Linear regression attempts to find parameter values that capture the relationship
between the input and output (in this case, stimulus features and brain activity).
It accomplishes this by finding parameters that minimize the squared difference
between model fit and training data, the minimum square error (MSE). The MSE
solution is the solution that maximizes the likelihood for Gaussian noise
distributions. However, when the number of model parameters is large in
comparison to the fitting data size, the MSE solution can yield parameter values
that are determined by the particular data set rather than the underlying
relationship (called overfitting). To control for this, regression is paired with
regularization, a technique that minimizes the tendency of a model to overfit data
by effectively shrinking the magnitude of parameters. Shrinkage is obtained by
implementing prior distributions on parameters centred at zero. This prior results
in an additional penalty term that is added to the MSE.

In the case of linear ridge regression, a single parameter (here referred to as the
ridge parameter) controls the penalty incurred by large parameter values.
Specifically, ridge regression includes a penalty term for the L2-norm of parameter
weights. This type of penalty corresponds to a Gaussian prior centred at zero for
the model parameters, with the ridge parameter specifying the variance of this
distribution. To choose a value of the ridge parameter, experimental trials were
repeatedly split into training and test sets using a jackknife approach. On each
iteration, one trial was left out for model validation. Models were fit on the training
data for multiple values of the Ridge parameter. All training inputs/outputs were
standardized to zero mean and unit standard deviation (that is, z-scored) before
model fitting. For each model, the goodness of fit was calculated using the
coefficient of determination (R2) between the predicted HFB response and the
actual response in the validation trial. This cross-validation was performed for all

electrodes/conditions, and repeated until all trials had been used in the test set,
resulting in a distribution of selected ridge parameters yielding the maximum R2.

To ensure that the prior over model coefficients was the same in all conditions,
the mode of the distribution of ridge parameters for active electrodes was selected,
and all models were re-fit with this single value for the ridge parameter using the
same cross-validation described above. Model coefficients were averaged across all
splits for final coefficient estimates. The cross-validation procedure was also used to
calculate t-values of model coefficients by taking the mean divided by the standard
deviation across CV splits. Code for performing encoding model fitting and cross-
validation across trials can be found in the ‘Data availability’ section.

It should be noted that eSTRFs reported in this study visually have a slightly
greater temporal extent than those in a recently published article that used a
different (but related) approach to electrode receptive field analysis using
maximally informative dimensions29. Receptive fields derived from models are
sensitive to the assumptions and constraints of that model, and one would expect
differences in STRF shape when using different models. This paper used L2
regularization (ridge regression) due to its interpretability, computational
efficiency, and robustness and prevalence in the literature. Other alternatives such
as maximally informative dimensions, boosting, or L1 (Lasso) regularization may
yield sparser STRFs29,41,57.

All model fitting was performed with custom code that relied on the
Python libraries scikit-learn58 and MNE-python51, which are built on top of the
scipy/numpy stack59.

MTF of eSTRFs. To investigate whether the eSTRF gain was tuned for
spectrotemporal features found in speech stimuli, the MPS of the sounds was
compared with the MTF estimated for each eSTRF. Similar to a frequency power
density spectrum, the MPS is obtained from the amplitude of the 2D Fourier
transform of the spectrogram42. It shows the spectrotemporal modulations
(in cycles per log-kHz for spectral modulation and in Hz for temporal
modulations) that have high and low power in a given signal (corresponding to
high occurrence and low occurrence). The MPS is invariant to translation and,
unlike a spectrogram, can be averaged across samples of a signal to describe average
properties. In a similar manner, the MTF can be obtained from the 2D Fourier
Transform of a spectrotemporal filter (here the STRF) and, without averaging,
shows the tuning gain of the filter in the same space as the MPS.

STRF-responsive electrode selection. We focused our analyses on electrodes
located on the temporal lobe (particularly covering the STG and superior temporal
sulcus). These regions of the brain respond to acoustic and linguistic features,
and represent the best candidates for detecting a shift in spectrotemporal tuning.
Responses then underwent several steps to exclude electrodes based on their
non-significant and/or poorly fit responses.

The predictive score of all eSTRF models fit on unfiltered (MIDDLE) speech
trials was calculated as the coefficient of determination (R2 between predicted and
actual HFB amplitude on held-out test data). For each electrode, we calculated the
99th percentile of model score across cross-validation splits. Electrodes whose
lower bound was greater than 0 were considered spectrotemporally-responsive
(STRF-R, see Fig. 6 and Supplementary Fig. 2).

To be included in the analysis, an electrode had to be Speech-R and STRF-R,
and had to be located on the temporal lobe and in perisylvian regions
(Supplementary Fig. 2).

eSTRF comparisons. To detect an eSTRF tuning shift from the BEFORE to the
AFTER condition, several analyses were carried out. The goal behind each was to
compare the eSTRF properties in the BEFORE and AFTER conditions to the neural
response in the MIDDLE speech condition. The primary aim of all analyses is to
determine whether the subjective perceptual enhancement effect corresponds to a
shift in spectrotemporal tuning to filtered speech.

MIDDLE condition coefficients generalization. To assess the extent to which
eSTRF plasticity improved the response to the speech signal, we estimated the
extent to which coefficients fit in the MIDDLE condition (on unfiltered speech)
generalized to the BEFORE and AFTER conditions. The eSTRF estimated in the
MIDDLE condition was used to make predictions about the HFB activity in the
BEFORE and AFTER condition. In this manner, one can determine the extent with
which the spectrotemporal tuning estimated from unfiltered speech was a valid
characterization of the tuning in each filtered condition. Predictions were obtained
by convolving the eSTRF filter with the spectrogram in each filtered speech
condition. We then compared the goodness of fit (R2 between the predicted and
actual HFB activity in the BEFORE and AFTER conditions).

eSTRF unfiltered speech output power analysis. Next, the extent to which
eSTRFs in the BEFORE and AFTER condition are responsive to spectrotemporal
features of unfiltered speech was assessed. For this purpose, we calculated the
predicted HFB response to unfiltered speech using the eSTRF in the BEFORE and
AFTER conditions, and as well as the output power of these predictions. This
power reflects the extent to which the eSTRF overlapped with unfiltered speech
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features and, thus, is able at extract unfiltered speech sounds. To account for
possible changes in the overall signal-to-noise ratio of eSTRFs in all condition, each
eSTRF was standardized to zero mean and unit standard deviation before con-
volution. Then, the unfiltered speech spectrograms were passed through the eSTRF
of the BEFORE and AFTER condition. Finally, the root-mean-squared (RMS)
amplitude of the output was calculated for each, and compared between the
BEFORE and AFTER conditions (Fig. 9).

eSTRF linear overlap partial correlation analysis. For each electrode included in
this analysis, the eSTRF in each condition was calculated as the z-score for each
spectrotemporal feature across CV splits. To test the hypothesis that spectro-
temporal tuning shifts after hearing the unfiltered context speech, the partial
correlation was calculated between sets of conditions. Partial correlation allows one
to determine the correlation between two variables, conditioned on one or more
other variables. It reflects the extent to which two variables are related in a manner
that is linearly orthogonal to the conditioned variables, and can be represented in
the following equation:

pcorrða; b j cÞ ¼ corrðbac � a; bÞ

where bac is the predicted value of variable a regressed against variable c. In other
words, one calculates partial correlation by regressing out all conditional variables,
and then calculating the correlation between the residuals and the variable of
interest. Partial correlation was calculated between the BEFORE/MIDDLE models
and the AFTER/MIDDLE models with the following convention:

simðbef ; midÞ ¼pcorrðbefore; middle j afterÞ
simðaft; midÞ ¼pcorrðafter; middle j beforeÞ

One would expect to find many similarities between the brain activity in
response to the BEFORE and AFTER condition. As such, one wants to control for
these similarities when calculating the correlation between BEFORE/AFTER and
the unfiltered condition. Partial correlation allows one to determine the extent to
which one condition is correlated with the unfiltered condition, after removing the
linear relationship with the other condition.

Between-condition permutation test statistics. The following permutation-
based procedure was used to compare a statistic for the difference between
conditions. For each electrode, the statistic of choice (for example, HFB amplitude
or partial correlation) was computed for each condition. Then, the difference
between conditions for each electrode was calculated. A null condition effect of
condition would have values distributed around 0. Because of the paired nature of
this design, one may simulate a permuted null distribution by randomly flipping
the sign of all difference values, effectively randomizing values to condition A or B.
The mean of the permuted difference vector was calculated as a single point in the
null distribution. This procedure was repeated 10,000 times to construct a null
distribution against which the ‘true’ difference vector mean is compared. Reported
P-values are the quantile for the difference vector mean with respect to this null
distribution. All statistical tests are two-sided.

Data availability. Raw data is stored in the Collaborative Research in
Computational Neuroscience (CRCNS) database at UC Berkeley (crcns.org). It can
be accessed with a free CRCNS account at crcns.org/data-sets. This manuscript
relied heavily on the Python packages MNE-python, scikit-learn, numpy, scipy,
pandas and matplotlib. Analyses were conducted using these packages, and the
large majority have been aggregated as a python package hosted on github. Code
for performing statistical permutation tests is found in the MNE-python statistics
module. Code for model fitting, feature extraction, statistics, and visualization can
be found at github.com/choldgraf/ecogtools.
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