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Modelling the Tox21 10K chemical profiles for
in vivo toxicity prediction and mechanism
characterization
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Target-specific, mechanism-oriented in vitro assays post a promising alternative to traditional

animal toxicology studies. Here we report the first comprehensive analysis of the Tox21 effort,

a large-scale in vitro toxicity screening of chemicals. We testB10,000 chemicals in triplicates

at 15 concentrations against a panel of nuclear receptor and stress response pathway assays,

producing more than 50 million data points. Compound clustering by structure similarity and

activity profile similarity across the assays reveals structure–activity relationships that are

useful for the generation of mechanistic hypotheses. We apply structural information and

activity data to build predictive models for 72 in vivo toxicity end points using a cluster-based

approach. Models based on in vitro assay data perform better in predicting human toxicity end

points than animal toxicity, while a combination of structural and activity data results in better

models than using structure or activity data alone. Our results suggest that in vitro activity

profiles can be applied as signatures of compound mechanism of toxicity and used in

prioritization for more in-depth toxicological testing.
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T
housands of chemicals to which humans are exposed have
inadequate data on which to predict their potential for
toxicological effects. Traditional toxicity testing conducted

in vivo using animal models provides chemical safety reference to
humans, but these methods are expensive and low throughput,
and it is often difficult to extrapolate the test results to human
health effect because of species differences. High-throughput
screening (HTS) techniques are now routinely used in
conjunction with computational methods and information
technology to probe how chemicals interact with biological
systems, both in vitro and in vivo. Progress is being made in
recognizing the patterns of response in genes and pathways
induced by certain chemicals or chemical classes that might be
predictive of adverse health outcomes in humans. However, as
with any new technology, both the reliability and the relevance of
the approach need to be demonstrated in the context of current
knowledge and practice.

The Tox21 programme1–4, a collaboration between the
National Institute of Environmental Health Sciences/National
Toxicology Program, the US Environmental Protection Agency/
National Center for Computational Toxicology, the National
Institutes of Health Chemical Genomics Center (now within the
National Center for Advancing Translational Sciences) and the
US Food and Drug Administration, aims to identify chemical
structure–activity signatures derived through in vitro testing that
could act as predictive surrogates for in vivo toxicity. During the
production phase of the Tox21 programme, the Tox21 10K
compound library has been screened against 30 cell-based assays,
including nuclear receptors5 and stress response pathways6, in a
quantitative HTS (qHTS) format in triplicate7–10.

Here we review the performance of these assays and the data
quality, summarize the activities observed from these assays and
evaluate the utility of the data towards achieving the Tox21 goals.
We find the in vitro assay activity profiles useful for hypotheses
generation on compound mechanism of toxicity. These data can
be applied, together with chemical structure information, to build
predictive models for in vivo toxicity and prioritize chemicals for
more advanced toxicological tests.

Results
Assay performance and activity distribution summary. Twelve
of the thirty assays screened performed well in the qHTS format
with performance statistics11 including signal-to-background
ratios Z3-fold, coefficient of variances r10% and Z’ factors
Z0.5 (Table 1). The other 18 assays, for example, the AR-bla
antagonist mode assay, with poorer performance in one or two
metrics, for example, lower signal-to-background ratio (o3),
were compensated by better performance in other metrics, for
example, extremely small coefficient of variance (o5%), such that
the overall assay performance still withheld as measured by data
reproducibility as described below. The positive control titrations
embedded in every plate replicated well across the entire screen
(Fig. 1) with variations in AC50s o3-fold for 89% of the assays
and o4-fold for all assays (Table 1). A more direct measure of
assay performance is data reproducibility. Reproducibility9 as
represented by active match, inactive match, inconclusive and
mismatch rates was calculated for all assays (Table 2) screened
against the three copies of the 10K library with compounds
plated in different well locations in each copy. Seventeen of the

Table 1 | Tox21 10K qHTS assay summary statistics*.

Assay S/B Z’ factor CV Positive control Control AC50 Control AC50 fold change

AhR-luc 8±4 0.3±0.2 16±15 Omeprazole 49.5mM 3.14
AR-bla agonist 1.9±0.2 0.2±0.1 5±1 R1881 1.21 nM 2.36
AR-bla antagonist 2.5±0.3 0.7±0.2 4±1 Cyproterone acetate 4.68mM 2.51
ARE-bla 2.1±0.3 0.70±0.06 5±2 b-Naphthoflavone 1.95mM 1.29
AR-MDA-luc agonist 6.6±0.6 0.68±0.06 15±2 R1881 14.3 pM 1.52
AR-MDA-luc antagonist 17±10 0.67±0.07 8±2 Nilutamide 15.3mM 1.49
Aromatase 6.2±0.8 0.80±0.03 4.7±0.9 Letrozole 6.70 nM 1.32
DT40 Rad54/Ku70 40±4 0.8±0.2 6±2 Tetra-octyl ammonium bromide 416 nM 1.63
DT40 WT 40±7 0.79±0.08 7±3 Tetra-octyl ammonium bromide 594 nM 1.79
DT40 Rev3 40±9 0.79±0.09 6±2 Tetra-octyl ammonium bromide 440nM 1.5
ATAD5 6.0±0.9 0.73±0.04 14±2 5-Fluorouridine 2.12 mM 2.11
ER-bla agonist 4.7±0.6 0.53±0.09 4±2 b-Estradiol 332 pM 1.51
ER-bla antagonist 3.3±0.8 0.4±0.1 11±3 4-Hydroxy tamoxifen 5.13 nM 1.58
ER-BG1-luc agonist 2.5±0.3 0.5±0.2 10±5 b-Estradiol 29.0 pM 3.75
ER-BG1-luc antagonist 8.0±0.9 0.77±0.07 6±2 4-Hydroxy tamoxifen 73.2 nM 1.28
FXR-bla agonist 4.0±0.7 0.3±0.2 7±1 Chenodeoxycholic acid 29.8mM 1.29
FXR-bla antagonist 4.4±0.9 0.67±0.09 3±1 Guggulsterone 36.7mM 1.3
TR-beta-luc agonist 9±2 0.63±0.07 12±3 T3 41.9 pM 2.14
TR-beta-luc antagonist 5.0±0.9 0.7±0.1 6±3 NA NA NA
GR-bla agonist 3.0±0.2 0.73±0.05 3.3±0.8 Dexamethasone 3.64 nM 1.36
GR-bla antagonist 1.9±0.1 0.5±0.1 4.8±0.9 Mifeprostone 1.71 nM 2.16
HSE-bla 3.9±0.5 0.46±0.08 4±1 17-AAG 45.3 nM 1.7
Mitochondria toxicity 6±3 0.6±0.2 8±3 FCCP 96.2 nM 2.79
P53-bla 3.1±0.4 0.6±0.2 6±2 Mitomycin C 1.53mM 1.62
PPAR-delta-bla agonist 2.5±0.3 0.67±0.06 6±1 L-165,041 36.4 nM 1.8
PPAR-delta-bla antagonist 2.2±0.2 0.57±0.06 4.3±0.6 MK886 38.5mM 1.95
PPAR-gamma-bla agonist 2.4±0.1 0.73±0.04 5±2 Rosiglitazone 11.8 nM 1.85
PPAR-gamma-bla antagonist 2.1±0.2 0.6±0.3 5±2 GW9662 2.47 nM 3.3
VDR-bla agonist 1.9±0.2 0.5±0.1 5±1 1a, 25-Dihydroxy vitamin D3 35.0 pM 1.97
VDR-bla antagonist 2.7±0.2 0.55±0.06 7±1 NA NA NA

AC50, concentration at 50% activity, AC50 fold change¼ 10SD(log AC50); CV, coefficient of Variance (derived from the negative control wells); NA, not applicable; qHTS, quantitative high-throughput
screening; S/B, signal to background.
*Data are derived from the positive and negative control wells on each plate and presented as mean±standard deviation (n¼408)

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10425

2 NATURE COMMUNICATIONS | 7:10425 |DOI: 10.1038/ncomms10425 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


thirty assays scored (score¼ 2�%active matchþ%inactive
match – %inconclusive - 2�%mismatch) 490 (grade A) in
terms of reproducibility with o0.5% mismatches in activity
(Table 2). Eleven assays had reproducibility scores between 80
and 90 (grade B) with mismatch rates o1%. Only two assays, the
wild-type DT40 and the GR-bla antagonist mode assay, scored
below 80, but still above 75, with 1–2% mismatch rates. For the
same sample, the average AC50 differences between the three runs
were o2-fold for all the assays (Table 2).

The 30 assays screened against the Tox21 10K collection
showed a wide spectrum of activities (Fig. 2) with active rates
ranging from 0.43% (VDR-bla agonist mode assay) to 27.4%
(DT40 Rad54/Ku70 mutant assay; Fig. 2a) and potencies ranging
from subnanomolar to tens of micromolar (Fig. 2b). The average
active rate of the 30 assays was 6.5%. The AR-MDA-luc agonist
mode assay had the largest fraction of potent compounds (33.3%
of actives had AC50 o1mM), whereas the FXR-bla agonist mode
assay had no active compound with AC50 o1 mM.

Clustering compounds by activity profile. The 10K compounds
were grouped into 610 clusters by their activity profile

similarity and each cluster was examined for enriched Medical
Subject Headings (MeSH; http://www.ncbi.nlm.nih.gov/mesh)
pharmacological action (PA) terms (see Online Methods for
details). Figure 3 shows the clustered activity profiles and the
most significantly enriched MeSH PA term in each cluster
(Supplementary Data 1). Of the 553 clusters that contain at least
one compound with known MeSH PA (Supplementary Data 1),
544 clusters have significantly enriched terms with Po0.05
(Fisher’s exact test), 362 clusters with Po0.01 (Fisher’s exact test)
and 89 clusters with Po0.001 (Fisher’s exact test). This result
indicates that compounds with similar activity profiles as
determined in the Tox21 screens tend to share similar annotated
modes of action (MOAs). For example, all compounds in cluster
k36.15 are annotated as cardiotonic agents, including deslanoside,
digitoxin, digoxin, ouabain and proscillaridin, which are cardiac
glycosides that act by inhibiting Na/K channels12. Cluster k30.6 is
enriched with statins, including atorvastatin, fluvastatin and
cerivastatin, which are hydroxymethylglutaryl-CoA reductase
inhibitors13. Seven of the eight compounds in cluster k30.9 are
antineoplastic antimetabolites, with the only exception of
N-butyl-N0-nitro-N-nitrosoguanidine, which does not have a
MeSH PA annotation but is a known DNA alkylating agent14.
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Figure 1 | Concentration response data of the positive control compounds for the 30 Tox21 phase II assays. (a) Agonist mode assays; (b) antagonist

mode assays. The positive control compound is plated as 16-pt. titrations in duplicate in the control columns of every assay plate. In the figure, each

concentration response curve is from one plate with a total of 408 plates per assay. The consistency of the control response curves is an indicator of good

assay performance.
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Another example is cluster k41.4, which is enriched with
oestrogenic compounds, such as 17alpha-ethinylestradiol and
non-steroidal oestrogens such as diethylstilbestrol and
zearalenone (Fig. 3b). A neighbouring cluster, k41.3, contains
bisphenol type compounds such as bisphenols A, B, Z and AF.
Even though most of the bisphenols do not have a MeSH PA
assigned, they are known oestrogenic compounds, as well15.
These compounds are not only structurally similar but also share
similar activity profiles (Fig. 3b).

Moreover, 537 clusters contain both compounds with known
MeSH PA and compounds with no MeSH PA annotation
available. If most compounds in the same cluster share similar
annotated MOA, then we can use this information to hypothesize
on the MOA of the unknown compounds. For example,
the pesticide fludioxonil does not have a MeSH PA assigned
but co-clustered with the oestrogenic compounds in k41.4,
consistent with recent reports on its endocrine disrupting
activity16. Similarly, the MeSH term ‘anti-inflammatory agents’
is significantly enriched in cluster k22.1 (Fisher’s exact test:
P¼ 4.90� 10� 12). Most of the compounds in this cluster are
glucocorticoids with similar steroid type structure. Six out of the
sixteen compounds in this cluster do not have MeSH
PA annotations, including metformin, a diabetes drug with a
distinct structure. Metformin decreases hyperglycemia primarily
by suppressing glucose production in the liver (hepatic
gluconeogenesis)17; however, the molecular target of metformin
is not clearly understood. The present co-clustering of metformin
with the anti-inflammatory glucocorticoids indicates that it may
act in a manner similar to that of the glucocorticoids. Metformin

was identified as an active agonist in both the glucocorticoid
receptor (GR) and androgen receptor (AR) assays. Ampiroxicam
is another non-steroidal drug found in k22.1 without a MeSH PA
annotation. A literature search on ampiroxicam revealed that it is
also an anti-inflammatory drug18 supporting the utility of
clustering by activity profile as an indicator for compound MOA.

Modelling in vivo toxicity with in vitro and structural data. For
benchmarking our models against available in vivo data, we used
72 end points derived from the Registry of Toxic Effects of
Chemical Substances database as described in the Methods
section. These models are based on compound assay activity
profiles clusters (activity-based models) or structure clusters
(structure-based models) or both (combined models). The
detailed model construction process is described in the Online
Methods. The premise for these models is that compounds that
share similar in vitro signatures and/or structure features are
likely to show similar in vivo effects. We first attempted to build
models for each of the 72 end points using the Tox21 phase II
assay activity profiles. The average area under the receiver
operating characteristic (ROC) curve (AUC-ROC) values from
the 100 randomizations of each model are shown in Fig. 4
and listed in Supplementary Table 1. The AUC-ROC values for
the 72 toxicity end points ranged from 0.50 (rat multiple dose
inhalation) to 0.90 (rat multiple dose intramuscular injection)
with an average of 0.64. In all, 7 of the 72 end points had good
predictive models with average AUC-ROC values 40.75. There
are five human toxicity end points, including standard Draize test

Table 2 | Assay performances measured by reproducibility of the Tox21 10K triplicate runs*.

Assay Active match (%) Inactive match (%) Inconclusive (%) Mismatch (%) AC50 fold change Scorew

ATAD5 5.34 91.78 2.84 0.05 1.30 99.51
DT40 Rad54/Ku70 23.92 59.47 16.50 0.10 1.32 90.61
DT40 Rev3 22.38 58.07 19.29 0.26 1.40 83.02
DT40 WT 21.07 58.89 18.65 1.39 1.49 79.58
P53-bla 11.10 84.86 4.04 0.00 1.29 103.02
ARE-bla 15.29 68.34 15.65 0.70 1.76 81.85
HSE-bla 7.57 86.38 6.05 0.00 1.45 95.46
Aromatase 15.94 73.08 10.66 0.30 1.44 93.66
Mitochondria toxicity 17.57 67.52 14.33 0.55 1.53 87.20
AhR-luc 8.86 78.78 12.24 0.10 1.82 84.05
AR-bla agonist 5.36 86.88 7.44 0.30 1.77 89.55
AR-bla antagonist 15.46 75.07 9.38 0.09 1.35 96.44
AR-MDA-luc agonist 4.14 93.65 2.20 0.00 1.36 99.74
AR-MDA-luc antagonist 13.22 76.44 10.07 0.27 1.48 92.28
ER-BG1-luc agonist 16.43 71.22 12.05 0.28 1.52 91.46
ER-BG1-luc antagonist 12.03 79.72 7.96 0.29 1.48 95.25
ER-bla agonist 7.01 87.11 5.87 0.01 1.36 95.25
ER-bla antagonist 9.84 77.86 11.95 0.34 1.49 84.90
FXR-bla agonist 2.46 93.87 3.65 0.02 1.53 95.09
FXR-bla antagonist 7.50 83.04 9.35 0.11 1.73 88.48
GR-bla agonist 6.67 87.49 5.75 0.10 1.37 94.89
GR-bla antagonist 9.73 75.11 13.13 2.01 1.81 77.40
PPAR-delta-bla agonist 3.46 90.79 5.71 0.04 1.71 91.91
PPAR-delta-bla antagonist 5.67 86.73 7.49 0.10 1.73 90.37
PPAR-gamma-bla agonist 8.79 83.87 7.02 0.31 1.61 93.81
PPAR-gamma-bla antagonist 8.61 79.88 11.05 0.44 1.90 85.15
TR-beta-luc agonist 2.13 90.72 7.15 0.00 1.38 87.84
TR-beta-luc antagonist 17.15 68.35 14.18 0.32 1.39 87.82
VDR-bla agonist 2.25 92.53 5.19 0.03 1.62 91.79
VDR-bla antagonist 5.41 86.41 8.11 0.08 1.53 88.97

*Active match is the percentage of compounds that were reproducibly active, inactive match is the percentage of compounds that were reproducibly inactive, and mismatch is the percentage of
compounds that showed conflicting activities in the triplicate runs. A compound is assigned inconclusive if its activity in the triplicate runs was not clearly active or inactive to make a conclusive
reproducibility call. Detailed definitions of the reproducibility calls can be found in our previous report9. AC50 fold change is the average AC50 differences in fold of the active compounds in the triplicate
runs.
wScore¼ 2� active matchþ inactive match – inconclusive - 2�mismatch.
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for human skin irritation, multiple dose toxicity data (TDLo)
through oral exposure from human females, human males and
humans (gender not specified), and reproductive toxicity data
(TDLo) through oral exposure from human females. The models
built for these end points performed significantly better than the
models of the 42 mouse/rat toxicity end points and the 7 rabbit
toxicity end points comparing the AUC-ROC values (t-test:
Po0.05). The average AUC-ROC values were 0.75 for the human
toxicity models, 0.65 for the mouse/rat models and 0.59 for the
rabbit toxicity models.

The compound structure-based models showed overall better
performance than the activity-based models, underlying the
ongoing need to further expand the battery of in vitro assays.
The AUC-ROC values for the 72 toxicity end points ranged from
0.59 (rat multiple dose inhalation) to 0.93 (acute toxicity in dog)
with an average of 0.78 and 45 of the 72 end points had good
predictive models with average AUC-ROC values 40.75 (Fig. 4
and Supplementary Table 1). However, the models built for

toxicity end points from different species did not show any
significant difference in their predictive performance. Compared
with the activity-based models, the performance improved
significantly for the mouse/rat and rabbit toxicity models with
average AUC-ROC values increased to 0.77 and 0.76, respectively,
but not as significantly for the human toxicity models (average
AUC-ROC¼ 0.81).

We then attempted to combine the compound structure and
assay data in an effort to further improve the models. Models
were built for only 67 of the 72 toxicity end points because the
more stringent criteria (requiring compounds to co-cluster by
both structure and activity) used to form the consensus clusters,
which were the basis for the combined models, resulted in smaller
clusters such that the compounds with data on the remaining 5
end points all became singletons when split into training and test
sets. Nevertheless, the combined models built for the 67
end points showed significantly better performance than the
structure-based models with an average AUC-ROC of 0.84
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Figure 2 | Activity distribution of the Tox21 10K library screened against the 30 assays. (a) Activity outcome distribution; (b) potency distribution.
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Figure 3 | Clustered activity profiles of the Tox21 10K library. In the heat map, each row is a compound and each column is an assay readout. The heat

map is coloured by the compound activity outcome, such that darker red or blue colours indicate more confident activators (red) or inhibitors (blue).

Compounds are grouped into clusters of similar activity profiles. Each cluster of compounds is labelled by the most significantly enriched MeSH PA term in

that cluster measured by a Fisher’s exact test. (a) All 10 K compounds; (b) example clusters of oestrogenic compounds.
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(compared to the average AUC-ROC of 0.78 for the
structure-based models; t-test: P¼ 1.7� 10� 7), and 55 out of
the 67 end points achieved AUC-ROC values 40.75 (Fig. 4
and Supplementary Table 1). Similar to the structure-based
models, the species difference between the model performances
disappeared. The animal toxicity models showed a larger
improvement in model performance than the human toxicity
models, for example, the average AUC-ROC values for the
mouse/rat models increased from 0.77 to 0.84 (t-test: P¼ 3.7
� 10� 6), whereas the average performance of the human models
increased from 0.81 to 0.86 (P40.05).

Discussion
The Tox21 10K collection has been screened against 30 assays,
yielding high-quality data sets with reproducibility scores485. In
this study, we summarized the activities observed from these
assays. Further analyses of the data are currently underway to
assess the biological relevance of the assay results, that is, whether
the actives identified by an assay are truly perturbing the pathway
that is purportedly being measured by the assay and not being
results of assay artefacts19. For this purpose, sets of reference or
tool compounds with known activity in these pathways need to be
collected to obtain an estimate of the false positive/negative rates
of each assay8–10. With our current active identification
methods9, we found that the compound activity profiles or
signatures generated across the 30 assays are useful for MOA
hypotheses generation and chemical prioritization20. Compounds
with unknown MOA that share similar profiles with compounds
with known MOA could be prioritized and tested for that
hypothesized MOA.

We tested the applicability of the assay data to building
predictive models for in vivo toxicity end points in comparison
with chemical structure data. The predictive performances of
most of these models are reasonable but not ideal, and are end
point dependent. Our results show that with the current set of
assay data chemical structures appear to be more predictive than
assay activity profiles for most in vivo toxicity end points. One
reason for this could be that the assays we have screened so far
only focused on two major areas: nuclear receptor signalling and
stress response pathways. Although these pathways are important
for toxicity, they are far from encompassing all aspects of biology
involved in toxic response. In the continuation of the Tox21
programme, more assays will be included to cover additional
pathways and targets that could be relevant for toxicity.
Moreover, we have observed that not all assays contribute equally
to the predictive power of the models, suggesting that it
is important to select the relevant assays and to ensure
comprehensive coverage. We checked the predictive capacity of
each assay of each in vivo toxicity end point, and for each end
point only a few assays were predictive with AUC-ROC 40.7
(Supplementary Table 1). Assays that measure cell viability took
up over half of the most predictive assays.

Species difference is another important contributing factor to
the less-than-ideal performance of the models based on assay
data. All of the screening data we used in this analysis are derived
from cell-based assays using human cells or cell lines, whereas
most of the in vivo data we are trying to model are collected from
animals. According to a 2004 Food and Drug Administration
report, 92% of new drugs that passed animal testing failed in
human clinical trials because of lack of effect or unexpected
toxicity 21. More recent studies show that animal data predicted
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human outcomes only around half of the time22. It is thus not
surprising that human in vitro cell line data did not show
high-predictive power when applied to predict animal toxicity
data. To better assess the predictive value of the human in vitro
assay data, in vivo human toxicity data, that is, clinical toxicity
data presently not readily available to the public, are required.

Comparison of the models for the few human toxicity end
points with the models for animal toxicity showed that the
assay data-based models performed markedly better in
predicting human toxicity than animal toxicity; in contrast, the
structure-based models did not show this species selectivity.
Consistent with our findings, a previous small-scale study testing
50 compounds reported similar observations that acute human
systemic toxicity was predicted better by human cell lines than
animal cell lines23. Furthermore, differences in experimental
conditions between in vitro and in vivo studies, such as dosage,
timing and metabolic capacity differences, could affect the
extrapolation from in vitro to in vivo results. Under qHTS
conditions, most compounds are tested in a fixed concentration
range up to 100 mM, and all of the assays used are short-term
assays with compound exposure time ranging from a few hours to
a day, whereas for in vivo studies compounds are tested at much
wider dose ranges and time spans up to months and years24.

Encouragingly, combining structure and activity information
significantly improved the model performance for most of
the in vivo end points. This phenomenon has been
observed previously and reviewed recently25. Our results
further corroborate the value of the in vitro assay data when
applied to in vivo toxicity prediction. However, the applicability
domain of the combined models is limited by the availability
of in vivo data for a number of toxicity end points. This
again highlights the importance of having easy access to more
high-quality in vivo data.

Data quality is another important factor affecting model
performance—a prediction could only be as good as the data it is
based on. All measurements have errors or variations associated.
In this study, we evaluated the quality of the in vitro qHTS data in
terms of reproducibility (Table 2). We also checked the
reproducibility of the in vivo data for which we tried to model
following a similar approach using compounds with replicate
measurements in each in vivo toxicity end point. We found that

for those end points with at least 20 compounds that had
replicates, there was a significant correlation (Pearson correlation:
r¼ 0.61, P¼ 1.51� 10� 5) between the reproducibility of the
replicates and the performance (AUC-ROC) of the model built
for that end point, such that models built for more reproducible
data showed better predictive power (Fig. 5). This observation
suggests that improving data quality would help further improve
the performance of in vivo toxicity prediction models. The
high-quality winning models resulting from the recent Tox21
Data Challenge (https://tripod.nih.gov/tox21/challenge), a
crowdsourcing effort that asked participants to build predictive
models for the in vitro assay data based on chemical structure,
provide additional evidence for the importance of data quality.

In summary, the Tox21 10K chemical library has been
screened against a panel of nuclear receptor and stress response
pathway assays, producing the largest set of high-quality in vitro
toxicity data known to date. Although data analysis and
interpretation are still underway, the compound activity profiles
generated from this study have been shown useful for MOA
hypotheses generation and chemical prioritization. Here, we built
and assessed predictive models for various in vivo toxicity end
points using in vitro qHTS data and compound structure data.
The in vitro assay data-based models were distinctly better at
predicting human toxicity end points than animal toxicity. More
human toxicity data and high-quality in vivo data are critical in
assessing the true predictive power of in vitro data-based models
of in vivo toxicity. Combing structure and activity data resulted in
better models than those built with structure or activity data alone
reinforcing the value of in vitro assay data in toxicity prediction.
The scale and high-resolution nature of the data provided within
this screening offer the opportunity for researchers worldwide to
derive new insights from this valuable resource in a manner akin
to previous crowdsourcing efforts (https://tripod.nih.gov/tox21/
challenge/)26,27. We have made publicly available all the
HTS results (http://www.ncbi.nlm.nih.gov/pcassay?term=tox21)
as well as the clustering results used for modelling and the Tox21
compound library information online (http://tripod.nih.gov/tox/
filedownload/).

Methods
Tox21 chemical library. The Tox21 10K library consists of compounds mostly
procured from commercial sources by the Environmental Protection Agency
(http://www.epa.gov/ncct/dsstox/sdf_tox21s.html), National Toxicology Program
and National Institutes of Health Chemical Genomics Center28, for a total of
greater than 10,000 plated compound solutions consisting of 8,599 unique chemical
substances including pesticides, industrial chemicals, food additives and drugs.
The main criteria for selection of the Tox21 compounds included, but were not
limited to, known or perceived environmental hazards or exposure concerns,
physicochemical properties indicating suitability for HTS (molecular weight,
volatility, solubility, logP), commercial availability and cost. In addition, the Tox21
Chemical Selection Group designated 88 diverse compounds in the Tox21 library
to serve as internal controls9 to assess assay reproducibility and examine positional
plate effects: these were included as duplicates in all screening plates7. The
structures and annotations of the Tox21 10K library have been deposited into
PubChem (http://www.ncbi.nlm.nih.gov/pcsubstance/?term=tox21).

Assays and qHTS data analysis. Two areas were the initial focus in the Tox21
phase II screening including nine nuclear receptor targets and seven stress response
pathways, selected based on their biological and toxicological relevance, public
interest and adaptability to miniaturization and automated screening. The assays
were run in different modes (agonist versus antagonist) and/or formats (full length
versus partial receptor) as detailed below, totaling 30 assays. Two reporter gene
systems, b-lactamase (bla) and luciferase (luc), were used in this study5. All cell-
based assays were multiplexed with a cell viability assay in the same assay well.
Although bla-based assays were multiplexed with a luminescence-based cell
viability assay (CellTiter-Glo viability assay, Promega), luc-based assays were
multiplexed with a fluorescence-based cell viability assay (Cell Titer-Fluor viability
assay, Promega). The nuclear receptor assays, including oestrogen receptor alpha,
ligand-binding domain (ER-bla), oestrogen receptor alpha, full length (ER-BG1-
luc), androgen receptor, ligand-binding domain (AR-bla), androgen receptor, full
length (AR-MDA-luc), glucocorticoid receptor (GR-bla), farnesoid X receptor
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Figure 5 | Correlation between reproducibility of in vivo data and model

performance. A positive correlation (Pearson correlation: r¼0.61,

P¼ 1.51� 10� 5) is found between the reproducibility of the compounds

tested in replicates and the model performance (AUC-ROC). Models built

for more reproducible data showed better predictive power.
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(FXR-bla), peroxisome proliferator-activated receptor delta (PPAR-delta-bla),
peroxisome proliferator-activated receptor gamma (PPAR-gamma-bla), thyroid
hormone receptor (TR-Luc), vitamin D receptor (VDR-bla) and aryl
hydrocarbon receptor (AhR-luc) assays, were screened in both agonist and
antagonist modes. Aromatase29,30, mitochondrial toxicity31 and DNA repair
deficient isogenic chicken DT40 cell viability (DT40) assays32 were screened in
antagonist mode. A number of stress response pathway assays, including
ATAD5-luc33, a genotoxicity assay, p53-bla, antioxidant responsive element
(ARE-bla)34 and heat-shock factor response element (HSE-bla) assays, were
screened in agonist mode. Detailed assay protocols can be found in PubChem
(http://www.ncbi.nlm.nih.gov/pcassay?term=tox21).

In primary screening, all compounds were tested as three independent runs,
with each of the three instances of a compound sample residing in a different
location on a different compound plate across replicates. Each replicate set of plates
was tested on a different day using a different batch of cells. Analysis of compound
concentration–response data was performed as previously described5. Briefly,
raw plate reads for each titration point were first normalized relative to the
positive control compound (agonist mode: 100%; antagonist mode: 0%) and
dimethylsulphoxide (DMSO)-only wells (agonist mode: 0%; antagonist
mode: -100%) as follows: % Activity¼ ((Vcompound – VDMSO)/(Vpos – VDMSO)) �
100, where Vcompound denotes the compound well values, Vpos denotes the median
value of the positive control wells and VDMSO denotes the median values of the
DMSO-only wells, and then corrected by applying an in-house pattern correction
algorithm using compound-free control plates (that is,, DMSO-only plates) at the
beginning and end of the compound plate stack. Concentration–response titration
points for each compound were fitted to a four-parameter Hill equation yielding
concentrations of half-maximal activity (AC50) and maximal response (efficacy)
values. Compounds were designated as Class 1–4 according to the type of
concentration–response curve observed5,35. Curve classes are heuristic measures of
data confidence, classifying concentration–responses on the basis of efficacy, the
number of data points observed above background activity, and the quality of fit.
Each curve class was then converted to a curve rank as previously described5 such
that more potent and efficacious compounds with higher quality curves were
assigned a higher rank. Curve ranks should be viewed as qualitative descriptors of
the concentration response profile of the compound. Compound reproducibility
was assessed by calculating the reproducibility of the curve ranks of each
compound generated from the triplicate runs9. A reproducibility score was
calculated for each assay using the formula: score¼ 2�%active matchþ%inactive
match-2�%mismatch-%inconclusive5.

Data sources. All Tox21 phase II qHTS data are available in PubChem
(http://www.ncbi.nlm.nih.gov/pcassay?term=tox21; see Accession Codes section
for assay IDs). In vivo toxicity data were retrieved from the Registry of
Toxic Effects of Chemical Substances database compiled by Leadscope (Leadscope,
Inc.). This compilation contains 129 different toxicity end points including
acute toxicity, hepatotoxicity, reproductive toxicity, carcinogenicity and skin
and eye irritation from various species such as human, rodents, primates and
birds on 410,000 molecules, 6,447 of which overlap with compounds in the
Tox21 10K library. Most of these compounds do not have data available for every
toxicity end point. Only the end points that have at least 50 active/toxic calls and 50
inactive/non-toxic calls were kept for further analysis. A total of 68 of the 129 end
points met this data availability requirement. In addition, we created three
composite end points by aggregating the acute toxicity, reproductive toxicity and
the tumorigenic end points, respectively, for a total of 72 end points. For
compounds with LD50 data available, an LD50 of o300mg kg� 1 was considered
toxic36. For other end points, compounds with toxicity measures falling into the
top 35 percentile were considered toxic. For composite end points, compounds that
are toxic in more than half of the component end points were considered toxic for
the composite call. The 72 selected end points and the number of toxic/non-toxic
compounds in each end point are listed in Supplementary Table 1. MeSH
(http://www.ncbi.nlm.nih.gov/mesh) PA terms were used for compound MOA
annotations.

Clustering and modelling for in vivo toxicity. The 10 K library was clustered
based on similarity in its members’ activity profiles (measured by curve rank)
across the 30 assays using the self-organizing map (SOM) algorithm37, resulting in
610 clusters. Each cluster was evaluated for enrichment of 363 MeSH PA terms
using the Fisher’s exact test. The 10K library was also clustered with the SOM
algorithm based on structural similarity using the Leadscope (Leadscope, Inc.)
structure fingerprints resulting in 999 clusters. The SOM algorithm clustered
the compound activity profiles or structure fingerprints based on the similarity
between the profiles measured by pair-wise Euclidean distance, and the
analysis was performed using the SOM Toolbox (http://www.cis.hut.fi/projects/
somtoolbox/) where detailed documentation of the algorithm can be found. Briefly,
the SOM was trained and optimized through 14 phases with 38,000 steps in each
phase to minimize the distances between the central data vectors and the
compound profiles to form the clusters. The initial learning rate alpha was set to
0.05, which decreased linearly to zero during training. The initial radius of the
training area was set to 20 and decreased linearly to one during training. Models
were built for the 72 in vivo toxicity end points using either the structure

(structure-based models) or assay activity (activity-based models) SOM clusters or
both. To build models using both the structure and activity SOM clusters, each
compound was reassigned to a ‘consensus cluster’ such that only compounds that
belong to the same structure cluster and the same activity cluster were assigned to
the same ‘consensus cluster’. The consensus clusters were used to build the
structure–activity combined models. For each model, compounds were randomly
split into two groups of approximately equal sizes, one used for training and the
other for testing. The randomization was conducted 100 times to generate 100
different training and test sets to evaluate the robustness of the models. For each
SOM cluster containing the training compounds, the enrichment of toxic training
compounds was determined by a Fisher’s exact test. The –log P-value from the
Fisher’s exact test was used as a measure of the toxic potential (toxicity score) of the
compounds in this cluster, and evaluated as a predictor of toxicity for test
compounds that fall into the same cluster. More significant P-values (larger –log
P-values) indicate a larger probability of toxicity. If a cluster was deficient of toxic
compounds, that is, the fraction of toxic compounds in the cluster was smaller than
the fraction of toxic compounds in the whole library, the log P-value was used
instead. Here we denote the toxicity scores obtained from the activity SOM as
p-activity, those from the structure SOM as p-structure, and those using both the
activity and structure SOMs as p-both. To test model performance, the
corresponding SOM cluster or consensus cluster was located for each test set
compound and p-activity, p-structure or p-both obtained from the training set was
retrieved and compared with the true toxicity outcome of the test compound to
determine whether the test compound should be counted as a true positive
(TP: toxic and score4cutoff), false positive (FP: non-toxic and score4cutoff), true
negative (TN: non-toxic and score rcutoff) or false negative (FN: toxic and score
rcutoff). Model performance was assessed by calculating the AUC-ROC, which is
a plot of sensitivity [TP/(TPþ FN)] versus (1-specificity [TN/(TNþ FP)])38.
A perfect model would have an AUC-ROC of 1 and an AUC-ROC of 0.5 indicates
a random classifier. The random data split and model training and testing were
repeated 100 times, and the average AUC-ROC values were calculated for each
model.
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