Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Memorizing spatiotemporal patterns

Live samples are intrinsically highly dynamic, yet techniques to monitor these complex environments usually reflect snapshots, thus making time-lapse imaging necessary to explore temporal progression of biological functions. Recent results indicate that exploiting some basic features of fluorescent protein maturation, such as green-to-red maturation of engineered proteins, should allow probing of temporally regulated information.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A comparison of schemes for the formation and maturation of chromophores in fluorescent proteins.
Figure 2: Principle of the bimolecular fluorescence complementation assay.
Figure 3

References

  1. Prasher, D.C., Eckenrode, V.K., Ward, W.W., Prendergast, F.G. & Cormier, M.J. Gene 111, 229–233 (1992).

    Article  CAS  Google Scholar 

  2. Matz, M.V. et al. Nat. Biotechnol. 17, 969–973 (1999).

    Article  CAS  Google Scholar 

  3. Labas, Y.A. et al. Proc. Natl. Acad. Sci. USA 99, 4256–4261 (2002).

    Article  CAS  Google Scholar 

  4. Zhang, J., Campbell, R.E., Ting, A.Y. & Tsien, R.Y. Nat. Rev. Mol. Cell Biol. 3, 906–918 (2002).

    Article  CAS  Google Scholar 

  5. Miyawaki, A. Dev. Cell 4, 295–305 (2003).

    Article  CAS  Google Scholar 

  6. Kettling, U., Koltermann, A., Schwille, P. & Eigen, M. Proc. Natl. Acad. Sci. USA 95, 1416–1420 (1998).

    Article  CAS  Google Scholar 

  7. Kogure, T. et al. Nat. Biotechnol. 24, 577–581 (2006).

    Article  CAS  Google Scholar 

  8. Kerppola, T.K. Nat. Rev. Mol. Cell Biol. 7, 449–456 (2006).

    Article  CAS  Google Scholar 

  9. Kerppola, T.K. Nat. Protoc. 1, 1278–1286 (2006).

    Article  Google Scholar 

  10. Magliery, T.J. et al. J. Am. Chem. Soc. 127, 146–157 (2005).

    Article  CAS  Google Scholar 

  11. Terskikh, A. et al. Science 290, 1585–1588 (2000).

    Article  CAS  Google Scholar 

  12. Tsien, R.Y. Annu. Rev. Biochem. 67, 509–544 (1998).

    Article  CAS  Google Scholar 

  13. Ando, R., Hama, H., Yamamoto-Hino, M., Mizuno, H. & Miyawaki, A. Proc. Natl. Acad. Sci. USA 99, 12651–12656 (2002).

    Article  CAS  Google Scholar 

  14. Wiedenmann, J. et al. Proc. Natl. Acad. Sci. USA 101, 15905–15910 (2004).

    Article  CAS  Google Scholar 

  15. Mizuno, H. et al. Mol. Cell 12, 1051–1058 (2003).

    Article  CAS  Google Scholar 

  16. Nienhaus, K., Nienhaus, G.U., Wiedenmann, J. & Nar, H. Proc. Natl. Acad. Sci. USA 102, 9156–9169 (2005).

    Article  CAS  Google Scholar 

  17. Gross, L.A., Baird, G.S., Hoffman, R.C., Baldridge, K.K. & Tsien, R.Y. Proc. Natl. Acad. Sci. USA 97, 11990–11995 (2000).

    Article  CAS  Google Scholar 

  18. Yarbrough, D., Wachter, R.M., Kallio, K., Matz, M.V. & Remington, S.J. Proc. Natl. Acad. Sci. USA 98, 462–467 (2001).

    Article  CAS  Google Scholar 

  19. Shaner, N.C., Steinbach, P.A. & Tsien, R.Y. Nat. Methods 2, 905–909 (2005).

    Article  CAS  Google Scholar 

  20. Terskikh, A.V., Fradkov, A.F., Zaraisky, A.G., Kajava, A.V. & Angres, B. J. Biol. Chem. 277, 7633–7636 (2002).

    Article  CAS  Google Scholar 

  21. Duncan, R.R. et al. Nature 422, 176–180 (2003).

    Article  CAS  Google Scholar 

  22. Bertera, S. et al. Biotechniques 35, 718–722 (2003).

    Article  CAS  Google Scholar 

  23. Cabantous, S., Terwilliger, T.C. & Waldo, G.S. Nat. Biotechnol. 23, 102–107 (2004).

    Article  Google Scholar 

  24. Hu, C.D., Chinenov, Y. & Kerppola, T.K. Mol. Cell 9, 789–798 (2002).

    Article  CAS  Google Scholar 

  25. Hu, C.D. & Kerppola, T. Nat. Biotechnol. 21, 539–545 (2003).

    Article  CAS  Google Scholar 

  26. Jach, G., Pesch, M., Richter, K., Frings, S. & Uhrig, J.F. Nat. Methods 3, 597–600 (2006).

    Article  CAS  Google Scholar 

  27. Shyu, Y.J., Liu, H., Deng, X. & Hu, C.D. Biotechniques 40, 61–66 (2006).

    Article  CAS  Google Scholar 

  28. Nagai, T. et al. Nat. Biotechnol. 20, 87–90 (2002).

    Article  CAS  Google Scholar 

  29. Rizzo, M.A., Springer, G.H., Granada, B. & Piston, D.W. Nat. Biotechnol. 22, 445–449 (2004).

    Article  CAS  Google Scholar 

  30. von der Lehr, N. et al. Mol. Cell 11, 1189–1200 (2003).

    Article  CAS  Google Scholar 

  31. de Virgilio, M., Kiosses, W.B. & Shattil, S.J. J. Cell Biol. 165, 305–311 (2004).

    Article  CAS  Google Scholar 

  32. Blondel, M. et al. EMBO J. 24, 1440–1452 (2005).

    Article  CAS  Google Scholar 

  33. Niu, T.K., Pfeifer, A.C., Lippincott-Schwartz, J. & Jackson, C.L. Mol. Biol. Cell 16, 1213–1222 (2005).

    Article  CAS  Google Scholar 

  34. Remy, I., Montmarquette, A. & Michnick, S.W. Nat. Cell Biol. 6, 358–365 (2004).

    Article  CAS  Google Scholar 

  35. Stolpe, T. et al. Protoplasma 226, 137–146 (2005).

    Article  CAS  Google Scholar 

  36. Demidov, V.V. et al. Proc. Natl. Acad. Sci. USA 103, 2052–2056 (2006).

    Article  CAS  Google Scholar 

  37. Miyawaki, A. Neuron 48, 189–199 (2005).

    Article  CAS  Google Scholar 

  38. Sprengel, R. & Hasan, M.T. Handb. Exp. Pharmacol. 178, 49–72 (2007).

    Article  CAS  Google Scholar 

  39. Chen, I. & Ting, A.Y. Curr. Opin. Biotechnol. 16, 35–40 (2005).

    Article  CAS  Google Scholar 

  40. Griffin, B.A., Adams, S.R. & Tsien, R.Y. Science 281, 269–272 (1998).

    Article  CAS  Google Scholar 

  41. Gaietta, G. et al. Science 296, 503–507 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank H. Mizuno and T. Kogure for preparation of figures and D. Mou for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyawaki, A., Karasawa, S. Memorizing spatiotemporal patterns. Nat Chem Biol 3, 598–601 (2007). https://doi.org/10.1038/nchembio1007-598

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio1007-598

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing