Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Ligand-promoted protein folding by biased kinetic partitioning

Abstract

Protein folding in cells occurs in the presence of high concentrations of endogenous binding partners, and exogenous binding partners have been exploited as pharmacological chaperones. A combined mathematical modeling and experimental approach shows that a ligand improves the folding of a destabilized protein by biasing the kinetic partitioning between folding and alternative fates (aggregation or degradation). Computationally predicted inhibition of test protein aggregation and degradation as a function of ligand concentration are validated by experiments in two disparate cellular systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A model for the partitioning of protein among folding, aggregation, and degradation pathways.
Figure 2: The proteins studied and plots of fraction soluble protein remaining (Fr) vs. ligand concentration.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Hingorani, K.S. & Gierasch, L.M. Curr. Opin. Struct. Biol. 24, 81–90 (2014).

    Article  CAS  Google Scholar 

  2. Monteith, W.B., Cohen, R.D., Smith, A.E., Guzman-Cisneros, E. & Pielak, G.J. Proc. Natl. Acad. Sci. USA 112, 1739–1742 (2015).

    Article  CAS  Google Scholar 

  3. Guzman, I. & Gruebele, M. J. Phys. Chem. B 118, 8459–8470 (2014).

    Article  CAS  Google Scholar 

  4. Powers, E.T., Powers, D.L. & Gierasch, L.M. Cell Rep. 1, 265–276 (2012).

    Article  CAS  Google Scholar 

  5. Bershtein, S., Choi, J.M., Bhattacharyya, S., Budnik, B. & Shakhnovich, E. Cell Rep. 11, 645–656 (2015).

    Article  CAS  Google Scholar 

  6. Jahn, T.R. & Radford, S.E. Arch. Biochem. Biophys. 469, 100–117 (2008).

    Article  CAS  Google Scholar 

  7. Parenti, G., Andria, G. & Valenzano, K.J. Mol. Ther. 23, 1138–1148 (2015).

    Article  CAS  Google Scholar 

  8. Sontag, E.M., Vonk, W.I. & Frydman, J. Curr. Opin. Cell Biol. 26, 139–146 (2014).

    Article  CAS  Google Scholar 

  9. Baccanari, D.P., Daluge, S. & King, R.W. Biochemistry 21, 5068–5075 (1982).

    Article  CAS  Google Scholar 

  10. Cho, Y. et al. Cell Rep. 11, 321–333 (2015).

    Article  CAS  Google Scholar 

  11. Ishii, S. et al. Biochem. J. 406, 285–295 (2007).

    Article  CAS  Google Scholar 

  12. Fan, J.Q., Ishii, S., Asano, N. & Suzuki, Y. Nat. Med. 5, 112–115 (1999).

    Article  CAS  Google Scholar 

  13. Sakuraba, H. et al. Am. J. Hum. Genet. 47, 784–789 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Asano, N. et al. Eur. J. Biochem. 267, 4179–4186 (2000).

    Article  CAS  Google Scholar 

  15. Main, E.R., Fulton, K.F. & Jackson, S.E. J. Mol. Biol. 291, 429–444 (1999).

    Article  CAS  Google Scholar 

  16. Banaszynski, L.A., Chen, L.C., Maynard-Smith, L.A., Ooi, A.G. & Wandless, T.J. Cell 126, 995–1004 (2006).

    Article  CAS  Google Scholar 

  17. Clancy, J.P. et al. Thorax 67, 12–18 (2012).

    Article  CAS  Google Scholar 

  18. Lukacs, G.L. et al. EMBO J. 13, 6076–6086 (1994).

    Article  CAS  Google Scholar 

  19. Van Goor, F. et al. Proc. Natl. Acad. Sci. USA 108, 18843–18848 (2011).

    Article  CAS  Google Scholar 

  20. Pankow, S. et al. Nature 528, 510–516 (2015).

    Article  CAS  Google Scholar 

  21. Tokuriki, N. & Tawfik, D.S. Nature 459, 668–673 (2009).

    Article  CAS  Google Scholar 

  22. Gershenson, A., Gierasch, L.M., Pastore, A. & Radford, S.E. Nat. Chem. Biol. 10, 884–891 (2014).

    Article  CAS  Google Scholar 

  23. Corcos, D. et al. Blood 115, 282–288 (2010).

    Article  CAS  Google Scholar 

  24. Bystroff, C., Oatley, S.J. & Kraut, J. Biochemistry 29, 3263–3277 (1990).

    Article  CAS  Google Scholar 

  25. Guce, A.I., Clark, N.E., Rogich, J.J. & Garman, S.C. Chem. Biol. 18, 1521–1526 (2011).

    Article  CAS  Google Scholar 

  26. Ionescu, R.M., Smith, V.F., O'Neill, J.C. Jr. & Matthews, C.R. Biochemistry 39, 9540–9550 (2000).

    Article  CAS  Google Scholar 

  27. Watson, M., Liu, J.W. & Ollis, D. FEBS J. 274, 2661–2671 (2007).

    Article  CAS  Google Scholar 

  28. Luo, S., Wehr, N.B. & Levine, R.L. Anal. Biochem. 350, 233–238 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C.R. Matthews (University of Massachusetts Medical School, Worcester) for providing us with a plasmid containing the wild-type, cysteine-free E. coli DHFR gene. This work was supported by NIH grants GM101644 to L.M.G. and E.T.P. and DK76877 to S.C.G.

Author information

Authors and Affiliations

Authors

Contributions

K.S.H., L.M.G., E.T.P., and S.C.G. conceived the experiments. K.S.H. performed the experiments with dDHFR. K.S.H., M.C.M., and D.T.D. performed the experiments with R301Q α-GAL. E.T.P. developed the mathematical model. All authors contributed to the experimental design, data analysis, and manuscript preparation.

Corresponding authors

Correspondence to Evan T Powers or Lila M Gierasch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–5 and Supplementary Note. (PDF 1615 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hingorani, K., Metcalf, M., Deming, D. et al. Ligand-promoted protein folding by biased kinetic partitioning. Nat Chem Biol 13, 369–371 (2017). https://doi.org/10.1038/nchembio.2303

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2303

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing