Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome

Abstract

Pseudouridine (Ψ) is the most abundant post-transcriptional RNA modification, yet little is known about its prevalence, mechanism and function in mRNA. Here, we performed quantitative MS analysis and show that Ψ is much more prevalent (Ψ/U ratio 0.2–0.6%) in mammalian mRNA than previously believed. We developed N3-CMC–enriched pseudouridine sequencing (CeU-Seq), a selective chemical labeling and pulldown method, to identify 2,084 Ψ sites within 1,929 human transcripts, of which four (in ribosomal RNA and EEF1A1 mRNA) are biochemically verified. We show that hPUS1, a known Ψ synthase, acts on human mRNA; under stress, CeU-Seq demonstrates inducible and stress-specific mRNA pseudouridylation. Applying CeU-Seq to the mouse transcriptome revealed conserved and tissue-specific pseudouridylation. Collectively, our approaches allow comprehensive analysis of transcriptome-wide pseudouridylation and provide tools for functional studies of Ψ-mediated epigenetic regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Quantitative analysis of pseudouridylation in mammalian mRNA.
Figure 2: CeU-Seq pre-enriches Ψ-containing RNA and identifies known and new pseudouridylation sites in rRNA.
Figure 3: CeU-Seq identifies thousands of pseudouridylation sites in human mRNA and ncRNA.
Figure 4: Inducible pseudouridylation displays stimulus-specific patterns.
Figure 5: Human and mouse pseudouridylation exhibits both shared and unique sites across tissues and species.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Machnicka, M.A. et al. MODOMICS: a database of RNA modification pathways–2013 update. Nucleic Acids Res. 41, D262–D267 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Charette, M. & Gray, M.W. Pseudouridine in RNA: what, where, how, and why. IUBMB Life 49, 341–351 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Ge, J. & Yu, Y.T. RNA pseudouridylation: new insights into an old modification. Trends Biochem. Sci. 38, 210–218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jack, K. et al. rRNA pseudouridylation defects affect ribosomal ligand binding and translational fidelity from yeast to human cells. Mol. Cell 44, 660–666 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yu, A.T., Ge, J. & Yu, Y.T. Pseudouridines in spliceosomal snRNAs. Protein Cell 2, 712–725 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kierzek, E. et al. The contribution of pseudouridine to stabilities and structure of RNAs. Nucleic Acids Res. 42, 3492–3501 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Kiss, T., Fayet-Lebaron, E. & Jady, B.E. Box H/ACA small ribonucleoproteins. Mol. Cell 37, 597–606 (2010).

    Article  PubMed  Google Scholar 

  8. Hamma, T. & Ferre-D′Amare, A.R. Pseudouridine synthases. Chem. Biol. 13, 1125–1135 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Heiss, N.S. et al. X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat. Genet. 19, 32–38 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Bykhovskaya, Y., Casas, K., Mengesha, E., Inbal, A. & Fischel-Ghodsian, N. Missense mutation in pseudouridine synthase 1 (PUS1) causes mitochondrial myopathy and sideroblastic anemia (MLASA). Am. J. Hum. Genet. 74, 1303–1308 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu, G., Xiao, M., Yang, C. & Yu, Y.T. U2 snRNA is inducibly pseudouridylated at novel sites by Pus7p and snR81 RNP. EMBO J. 30, 79–89 (2011).

    Article  PubMed  Google Scholar 

  12. Courtes, F.C. et al. 28S rRNA is inducibly pseudouridylated by the mTOR pathway translational control in CHO cell cultures. J. Biotechnol. 174, 16–21 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Basak, A. & Query, C.C. A pseudouridine residue in the spliceosome core is part of the filamentous growth program in yeast. Cell Rep. 8, 966–973 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cavaillé, J. et al. Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization. Proc. Natl. Acad. Sci. USA 97, 14311–14316 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hüttenhofer, A., Brosius, J. & Bachellerie, J.P. RNomics: identification and function of small, non-messenger RNAs. Curr. Opin. Chem. Biol. 6, 835–843 (2002).

    Article  PubMed  Google Scholar 

  16. Karijolich, J. & Yu, Y.-T. Converting nonsense codons into sense codons by targeted pseudouridylation. Nature 474, 395–398 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fernández, I.S. Unusual base pairing during the decoding of a stop codon by the ribosome. Nature 500, 107–110 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ho, N.W. & Gilham, P.T. The reversible chemical modification of uracil, thymine, and guanine nucleotides and the modification of the action of ribonuclease on ribonucleic acid. Biochemistry 6, 3632–3639 (1967).

    Article  CAS  PubMed  Google Scholar 

  19. Bakin, A. & Ofengand, J. Four newly located pseudouridylate residues in Escherichia coli 23S ribosomal RNA are all at the peptidyltransferase center: analysis by the application of a new sequencing technique. Biochemistry 32, 9754–9762 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Bakin, A.V. & Ofengand, J. Mapping of pseudouridine residues in RNA to nucleotide resolution. Methods Mol. Biol. 77, 297–309 (1998).

    CAS  PubMed  Google Scholar 

  21. Carlile, T.M. et al. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515, 143–146 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schwartz, S. et al. Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 159, 148–162 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lovejoy, A.F., Riordan, D.P. & Brown, P.O. Transcriptome-wide mapping of pseudouridines: pseudouridine synthases modify specific mRNAs in S. cerevisiae. PLoS ONE 9, e110799 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hughes, D.G. & Maden, B.E. The pseudouridine contents of the ribosomal ribonucleic acids of three vertebrate species. Numerical correspondence between pseudouridine residues and 2′-O-methyl groups is not always conserved. Biochem. J. 171, 781–786 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Maden, B.E. The numerous modified nucleotides in eukaryotic ribosomal RNA. Prog. Nucleic Acid Res. Mol. Biol. 39, 241–303 (1990).

    Article  CAS  PubMed  Google Scholar 

  26. Jia, G. et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7, 885–887 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zheng, G. et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell 49, 18–29 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Desrosiers, R., Friderici, K. & Rottman, F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc. Natl. Acad. Sci. USA 71, 3971–3975 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dubin, D.T. & Taylor, R.H. The methylation state of poly A–containing messenger RNA from cultured hamster cells. Nucleic Acids Res. 2, 1653–1668 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nishikura, K. Functions and regulation of RNA editing by ADAR deaminases. Annu. Rev. Biochem. 79, 321–349 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu, N. et al. Probing N6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. RNA 19, 1848–1856 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hunter, S. et al. InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res. 40, D306–D312 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Castello, A. et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149, 1393–1406 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Baltz, A.G. et al. The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol. Cell 46, 674–690 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Zhao, X. et al. Regulation of nuclear receptor activity by a pseudouridine synthase through posttranscriptional modification of steroid receptor RNA activator. Mol. Cell 15, 549–558 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Sibert, B.S. & Patton, J.R. Pseudouridine synthase 1: a site-specific synthase without strict sequence recognition requirements. Nucleic Acids Res. 40, 2107–2118 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Becker, H.F., Motorin, Y., Planta, R.J. & Grosjean, H. The yeast gene YNL292w encodes a pseudouridine synthase (Pus4) catalyzing the formation of Ψ55 in both mitochondrial and cytoplasmic tRNAs. Nucleic Acids Res. 25, 4493–4499 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Behm-Ansmant, I. et al. The Saccharomyces cerevisiae U2 snRNA:pseudouridine-synthase Pus7p is a novel multisite-multisubstrate RNA:Psi-synthase also acting on tRNAs. RNA 9, 1371–1382 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dominissini, D. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201–206 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Meyer, K.D. et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149, 1635–1646 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. He, C. Grand challenge commentary: RNA epigenetics? Nat. Chem. Biol. 6, 863–865 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Fu, Y., Dominissini, D., Rechavi, G. & He, C. Gene expression regulation mediated through reversible m6A RNA methylation. Nat. Rev. Genet. 15, 293–306 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Liu, N. et al. N6-methyladenosine–dependent RNA structural switches regulate RNA-protein interactions. Nature 518, 560–564 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, X. et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505, 117–120 (2014).

    PubMed  Google Scholar 

  45. Tremml, G., Singer, M. & Malavarca, R. Culture of mouse embryonic stem cells. Curr. Protoc. Stem Cell Biol. 5, 1C4 (2008).

    Google Scholar 

  46. König, J. et al. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat. Struct. Mol. Biol. 17, 909–915 (2010).

    PubMed  PubMed Central  Google Scholar 

  47. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ding, Y. et al. In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature 505, 696–700 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank R. Meng and S. Huang for technical assistance and N. Liu, X. Wang and X. Liu for discussion. This work was supported by the National Basic Research Foundation of China (no. 2014CB964900) and the National Natural Science Foundation of China (nos. 21472009 and 31270838).

Author information

Authors and Affiliations

Authors

Contributions

X.L., S.M. and C.Y. conceived the project, designed the experiments and wrote the manuscript. X.L. and S.M. performed the experiments. P.Z. designed and performed the bioinformatics analysis; J.S. contributed in making figures, J.B. synthesized the N3-CMC derivative, and F.S. contributed in Ψ quantification. All authors commented on and approved the paper.

Corresponding author

Correspondence to Chengqi Yi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–6, Supplementary Figures 1–11 and Supplementary Note. (PDF 2795 kb)

Supplementary Data Set (XLSX 344 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhu, P., Ma, S. et al. Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat Chem Biol 11, 592–597 (2015). https://doi.org/10.1038/nchembio.1836

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1836

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing