Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Archaeal Elp3 catalyzes tRNA wobble uridine modification at C5 via a radical mechanism

Abstract

Approximately 25% of cytoplasmic tRNAs in eukaryotic organisms have the wobble uridine (U34) modified at C5 through a process that, according to genetic studies, is carried out by the eukaryotic Elongator complex. Here we show that a single archaeal protein, the homolog of the third subunit of the eukaryotic Elongator complex (Elp3), is able to catalyze the same reaction. The mechanism of action by Elp3 described here represents unprecedented chemistry performed on acetyl-CoA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In vitro reconstitution of MinElp3 activity.
Figure 2: Chromatographic and spectrometric analyses of the consumption of cofactors and the production of 5′-dA.
Figure 3: Proposed mechanism of the Elp3-catalyzed reaction.

Similar content being viewed by others

References

  1. Otero, G. et al. Mol. Cell 3, 109–118 (1999).

    Article  CAS  Google Scholar 

  2. Krogan, N.J. & Greenblatt, J.F. Mol. Cell. Biol. 21, 8203–8212 (2001).

    Article  CAS  Google Scholar 

  3. Winkler, G.S. et al. J. Biol. Chem. 276, 32743–32749 (2001).

    Article  CAS  Google Scholar 

  4. Chinenov, Y. Trends Biochem. Sci. 27, 115–117 (2002).

    Article  CAS  Google Scholar 

  5. Sofia, H.J., Chen, G., Hetzler, B.G., Reyes-Spindola, J.F. & Miller, N.E. Nucleic Acids Res. 29, 1097–1106 (2001).

    Article  CAS  Google Scholar 

  6. Wittschieben, B.O. et al. Mol. Cell 4, 123–128 (1999).

    Article  CAS  Google Scholar 

  7. Huang, B., Johansson, M.J. & Bystrom, A.S. RNA 11, 424–436 (2005).

    Article  CAS  Google Scholar 

  8. Mehlgarten, C. et al. Mol. Microbiol. 76, 1082–1094 (2010).

    Article  CAS  Google Scholar 

  9. Chen, C., Tuck, S. & Bystrom, A.S. PLoS Genet. 5, e1000561 (2009).

    Article  Google Scholar 

  10. Singh, N., Lorbeck, M.T., Zervos, A., Zimmerman, J. & Elefant, F. J. Neurochem. 115, 493–504 (2010).

    Article  CAS  Google Scholar 

  11. Bauer, F. et al. Cell Reports 1, 424–433 (2012).

    Article  CAS  Google Scholar 

  12. Moukadiri, I. et al. Nucleic Acids Res. 37, 7177–7193 (2009).

    Article  CAS  Google Scholar 

  13. McCloskey, J.A. et al. Nucleic Acids Res. 29, 4699–4706 (2001).

    Article  CAS  Google Scholar 

  14. Chen, C., Huang, B., Eliasson, M., Ryden, P. & Bystrom, A.S. PLoS Genet. 7, e1002258 (2011).

    Article  CAS  Google Scholar 

  15. Grove, T.L. et al. Science 332, 604–607 (2011).

    Article  CAS  Google Scholar 

  16. Kim, J. et al. Nature 498, 123–126 (2013).

    Article  CAS  Google Scholar 

  17. Pokholok, D.K., Hannett, N.M. & Young, R.A. Mol. Cell 9, 799–809 (2002).

    Article  CAS  Google Scholar 

  18. Fichtner, L., Frohloff, F., Jablonowski, D., Stark, M.J. & Schaffrath, R. Mol. Microbiol. 45, 817–826 (2002).

    Article  CAS  Google Scholar 

  19. Holmberg, C. et al. J. Biol. Chem. 277, 31918–31928 (2002).

    Article  CAS  Google Scholar 

  20. Kim, J.H., Lane, W.S. & Reinberg, D. Proc. Natl. Acad. Sci. USA 99, 1241–1246 (2002).

    Article  CAS  Google Scholar 

  21. Ragab, A.E., Gruschow, S., Tromans, D.R. & Goss, R.J. J. Am. Chem. Soc. 133, 15288–15291 (2011).

    Article  CAS  Google Scholar 

  22. Broussard, T.C., Price, A.E., Laborde, S.M. & Waldrop, G.L. Biochemistry 52, 3346–3357 (2013).

    Article  CAS  Google Scholar 

  23. Fu, Y. et al. Angew. Chem. Int. Edn Engl. 49, 8885–8888 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by US National Institute of Health (GM107533 to R.H.H.). We thank Y. Fu and C. He (University of Chicago) for providing us with the synthetic cm5U, F. Sun for assistance with ESI-LC/MS, J. Li and E. Oldfield for assistance with EPR and J. Imlay for the initial use of an anaerobic chamber.

Author information

Authors and Affiliations

Authors

Contributions

R.H.H. conceived the project. K.S. and R.H.H. designed the experiments. K.S. expressed and purified proteins, in vitro transcribed and purified tRNA substrate and performed in vitro reconstitution. K.S. and R.H.H. performed RP-HPLC and ESI-LC/MS analyses. P.W. and J.S. assisted K.S. in the purification of Elp3 and tRNA. R.H.H. wrote the manuscript with input from other authors.

Corresponding author

Correspondence to Raven H Huang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results and Supplementary Figures 1–9. (PDF 2528 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvadurai, K., Wang, P., Seimetz, J. et al. Archaeal Elp3 catalyzes tRNA wobble uridine modification at C5 via a radical mechanism. Nat Chem Biol 10, 810–812 (2014). https://doi.org/10.1038/nchembio.1610

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1610

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing