Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Distinct mechanisms for spiro-carbon formation reveal biosynthetic pathway crosstalk

Abstract

Spirotryprostatins, an indole alkaloid class of nonribosomal peptides isolated from Aspergillus fumigatus, are known for their antimitotic activity in tumor cells. Because spirotryprostatins and many other chemically complex spiro-carbon–bearing natural products exhibit useful biological activities, identifying and understanding the mechanism of spiro-carbon biosynthesis is of great interest. Here we report a detailed study of spiro-ring formation in spirotryprostatins from tryprostatins derived from the fumitremorgin biosynthetic pathway, using reactants and products prepared with engineered yeast and fungal strains. Unexpectedly, FqzB, an FAD-dependent monooxygenase from the unrelated fumiquinazoline biosynthetic pathway, catalyzed spiro-carbon formation in spirotryprostatin A via an epoxidation route. Furthermore, FtmG, a cytochrome P450 from the fumitremorgin biosynthetic pathway, was determined to catalyze the spiro-ring formation in spirotryprostatin B. Our results highlight the versatile role of oxygenating enzymes in the biosynthesis of structurally complex natural products and indicate that cross-talk of different biosynthetic pathways allows product diversification in natural product biosynthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proposed biosynthesis of tryprostatins fumitremorgins and spirotryprostatins in A. fumigatus.
Figure 2: Proposed mechanisms of chemical transformations facilitated by epoxidation.
Figure 3: In vivo and in vitro characterization of the flavin-containing monooxygenase FqzB from the fumiquinazoline biosynthetic pathway in the formation of spirotryprostatin A.
Figure 4: In vivo and in vitro characterizations of the cytochrome P450 FtmG for the formation of spirotryprostatins B and G.

Similar content being viewed by others

References

  1. Cui, C.-B., Kakeya, H. & Osada, H. Novel mammalian cell cycle inhibitors, spirotryprostatins A and B, produced by Aspergillus fumigatus, which inhibit mammalian cell cycle at G2/M phase. Tetrahedron 52, 12651–12666 (1996).

    Article  CAS  Google Scholar 

  2. Cui, C.-B., Kakeya, H. & Osada, H. Spirotryprostatin B, a novel mammalian cell cycle inhibitor produced by Aspergillus fumigatus. J. Antibiot. (Tokyo) 49, 832–835 (1996).

    Article  CAS  Google Scholar 

  3. Allen, J.D. et al. Potent and specific inhibition of the breast cancer resistance protein multidrug transporter in vitro and in mouse intestine by a novel analogue of fumitremorgin C. Mol. Cancer Ther. 1, 417–425 (2002).

    Article  CAS  Google Scholar 

  4. Edmondson, S.D. & Danishefsky, S.J. The total synthesis of spirotryprostatin A. Angew. Chem. Int. Edn Engl. 37, 1138–1140 (1998).

    Article  CAS  Google Scholar 

  5. Edmondson, S., Danishefsky, S.J., Sepp-Lorenzino, L. & Rosen, N. Total synthesis of spirotryprostatin A, leading to the discovery of some biologically promising analogues. J. Am. Chem. Soc. 121, 2147–2155 (1999).

    Article  CAS  Google Scholar 

  6. Wang, H. & Ganesan, A. A biomimetic total synthesis of (−)-spirotryprostatin B and related studies. J. Org. Chem. 65, 4685–4693 (2000).

    Article  CAS  Google Scholar 

  7. Williams, R.M. Total synthesis and biosynthesis of the paraherquamides: an intriguing story of the biological Diels–Alder construction. Chem. Pharm. Bull. (Tokyo) 50, 711–740 (2002).

    Article  CAS  Google Scholar 

  8. Li, S.M. Genome mining and biosynthesis of fumitremorgin-type alkaloids in ascomycetes. J. Antibiot. (Tokyo) 64, 45–49 (2011).

    Article  CAS  Google Scholar 

  9. Maiya, S., Grundmann, A., Li, S.M. & Turner, G. The fumitremorgin gene cluster of Aspergillus fumigatus: identification of a gene encoding brevianamide F synthetase. ChemBioChem 7, 1062–1069 (2006).

    Article  CAS  Google Scholar 

  10. Grundmann, A. & Li, S.M. Overproduction, purification and characterization of FtmPT1, a brevianamide F prenyltransferase from Aspergillus fumigatus. Microbiology 151, 2199–2207 (2005).

    Article  CAS  Google Scholar 

  11. Kato, N. et al. Identification of cytochrome P450s required for fumitremorgin biosynthesis in Aspergillus fumigatus. ChemBioChem 10, 920–928 (2009).

    Article  CAS  Google Scholar 

  12. Kato, N., Suzuki, H., Okumura, H., Takahashi, S. & Osada, H. A point mutation in ftmD blocks the fumitremorgin biosynthetic pathway in Aspergillus fumigatus strain Af293. Biosci. Biotechnol. Biochem. 77, 1061–1067 (2013).

    Article  CAS  Google Scholar 

  13. Zhang, H., Wang, Y. & Pfeifer, B.A. Bacterial hosts for natural product production. Mol. Pharm. 5, 212–225 (2008).

    Article  CAS  Google Scholar 

  14. Xu, W., Cai, X., Jung, M.E. & Tang, Y. Analysis of intact and dissected fungal polyketide synthase–nonribosomal peptide synthetase in vitro and in Saccharomyces cerevisiae. J. Am. Chem. Soc. 132, 13604–13607 (2010).

    Article  CAS  Google Scholar 

  15. Hawkins, K.M. & Smolke, C.D. Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae. Nat. Chem. Biol. 4, 564–573 (2008).

    Article  CAS  Google Scholar 

  16. Minami, H. et al. Microbial production of plant benzylisoquinoline alkaloids. Proc. Natl. Acad. Sci. USA 105, 7393–7398 (2008).

    Article  CAS  Google Scholar 

  17. Ro, D.K. et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440, 940–943 (2006).

    Article  CAS  Google Scholar 

  18. Lubertozzi, D. & Keasling, J.D. Developing Aspergillus as a host for heterologous expression. Biotechnol. Adv. 27, 53–75 (2009).

    Article  CAS  Google Scholar 

  19. Ishiuchi, K. et al. Establishing a new methodology for genome mining and biosynthesis of polyketides and peptides through yeast molecular genetics. ChemBioChem 13, 846–854 (2012).

    Article  CAS  Google Scholar 

  20. Meyer, V. et al. Highly efficient gene targeting in the Aspergillus niger kusA mutant. J. Biotechnol. 128, 770–775 (2007).

    Article  CAS  Google Scholar 

  21. Cui, C.B., Kakeya, H., Okada, G., Onose, R. & Osada, H. Novel mammalian cell cycle inhibitors, tryprostatins A, B and other diketopiperazines produced by Aspergillus fumigatus. I. Taxonomy, fermentation, isolation and biological properties. J. Antibiot. (Tokyo) 49, 527–533 (1996).

    Article  CAS  Google Scholar 

  22. Takahashi, C. et al. Fumiquinazolines A–G, novel metabolites of a fungus separated from a Pseudolabrus marine fish. J. Chem. Soc. Perkin Trans. I 2345–2353 (1995).

  23. Ames, B.D., Liu, X. & Walsh, C.T. Enzymatic processing of fumiquinazoline F: a tandem oxidative-acylation strategy for the generation of multicyclic scaffolds in fungal indole alkaloid biosynthesis. Biochemistry 49, 8564–8576 (2010).

    Article  CAS  Google Scholar 

  24. Gao, X. et al. Fungal indole alkaloid biosynthesis: genetic and biochemical investigation of the tryptoquialanine pathway in Penicillium aethiopicum. J. Am. Chem. Soc. 133, 2729–2741 (2011).

    Article  CAS  Google Scholar 

  25. Haynes, S.W., Ames, B.D., Gao, X., Tang, Y. & Walsh, C.T. Unraveling terminal C-domain–mediated condensation in fungal biosynthesis of imidazoindolone metabolites. Biochemistry 50, 5668–5679 (2011).

    Article  CAS  Google Scholar 

  26. Li, S. et al. Biochemical characterization of NotB as an FAD-dependent oxidase in the biosynthesis of notoamide indole alkaloids. J. Am. Chem. Soc. 134, 788–791 (2012).

    Article  CAS  Google Scholar 

  27. García-Estrada, C. et al. A single cluster of coregulated genes encodes the biosynthesis of the mycotoxins roquefortine C and meleagrin in Penicillium chrysogenum. Chem. Biol. 18, 1499–1512 (2011).

    Article  Google Scholar 

  28. Grubbs, A.W., Artman, G.D. III, Tsukamoto, S. & Williams, R.M. A concise total synthesis of the notoamides C and D. Angew. Chem. Int. Edn Engl. 46, 2257–2261 (2007).

    Article  CAS  Google Scholar 

  29. Kato, H. et al. Study on the biosynthesis of the notoamides: pinacol-type rearrangement of the isoprenyl unit in deoxybrevianamide E and 6-hydroxydeoxybrevianamide E. Tetrahedr. Lett. 52, 6923–6926 (2011).

    Article  CAS  Google Scholar 

  30. Sanz-Cervera, J.F., Glinka, T. & Williams, R.M. Biosynthesis of brevianamides A and B: in search of the biosynthetic Diels-Alder construction. Tetrahedron 49, 8471–8482 (1993).

    Article  CAS  Google Scholar 

  31. Wang, P., Gao, X. & Tang, Y. Complexity generation during natural product biosynthesis using redox enzymes. Curr. Opin. Chem. Biol. 16, 362–369 (2012).

    Article  Google Scholar 

  32. Ishiuchi, K. et al. Combinatorial generation of complexity by redox enzymes in the chaetoglobosin A biosynthesis. J. Am. Chem. Soc. 135, 7371–7377 (2013).

    Article  CAS  Google Scholar 

  33. Lazos, O. et al. Biosynthesis of the putative siderophore erythrochelin requires unprecedented crosstalk between separate nonribosomal peptide gene clusters. Chem. Biol. 17, 160–173 (2010).

    Article  CAS  Google Scholar 

  34. Yin, W.B. et al. A nonribosomal peptide synthetase-derived iron(iii) complex from the pathogenic fungus Aspergillus fumigatus. J. Am. Chem. Soc. 135, 2064–2067 (2013).

    Article  CAS  Google Scholar 

  35. Myers, E.W. & Miller, W. Optimal alignments in linear space. Comput. Appl. Biosci. 4, 11–17 (1988).

    CAS  PubMed  Google Scholar 

  36. Ames, B.D. et al. Complexity generation in fungal peptidyl alkaloid biosynthesis: oxidation of fumiquinazoline A to the heptacyclic hemiaminal fumiquinazoline C by the flavoenzyme Af12070 from Aspergillus fumigatus. Biochemistry 50, 8756–8769 (2011).

    Article  CAS  Google Scholar 

  37. Ohnishi, K. & Ono, B. Inverted repeat of a large segment unveiled on the right arm of Saccharomyces cerevisiae chromosome II. Yeast 22, 321–336 (2005).

    Article  CAS  Google Scholar 

  38. Brachmann, C.B. et al. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14, 115–132 (1998).

    Article  CAS  Google Scholar 

  39. Jones, E.W. Tackling the protease problem in Saccharomyces cerevisiae. Methods Enzymol. 194, 428–453 (1991).

    Article  CAS  Google Scholar 

  40. Ma, S.M. et al. Complete reconstitution of a highly reducing iterative polyketide synthase. Science 326, 589–592 (2009).

    Article  CAS  Google Scholar 

  41. Pompon, D., Louerat, B., Bronine, A. & Urban, P. Yeast expression of animal and plant P450s in optimized redox environments. Methods Enzymol. 272, 51–64 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank J. Shimokawa at the University of Tokyo for providing us with a sample of spirotryprostatin A. We would like to express our appreciation to financial support from Japan Society for the Promotion of Science (JSPS) through the 'Funding Program for Next Generation World-Leading Researchers', initiated by the Council for Science and Technology Policy (no. LS103) (K.W.) and by the Industrial Technology Research Grant Program in 2009 (no. 09C46001a) from the New Energy and Industrial Technology Development Organization (NEDO) of Japan (K.W.). These works were also supported in part by The Uehara Memorial Foundation (K.W.), by Mochida Memorial Foundation for Medical and Pharmaceutical Research (K.W.), by The Hokuto Foundation for Bioscience (K.W.) and by The Naito Foundation Japan (K.W.). Postdoctoral fellowships to Y.T. from JSPS are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Y.T., N.I., H.M. and K.W. conceived and designed the study. Y.T. and N.I. designed and performed molecular cloning. Y.T. and N.I. performed the heterologous protein expression and purification as well as in vitro and in vivo characterization of the enzymes. D. W. and Y. G. elucidated the chemical structures. All of the authors analyzed and discussed the results. K.H. and K.W. prepared the manuscript.

Corresponding author

Correspondence to Kenji Watanabe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–68, Supplementary Tables 1–14 and Supplementary Notes 1–3. (PDF 7469 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsunematsu, Y., Ishikawa, N., Wakana, D. et al. Distinct mechanisms for spiro-carbon formation reveal biosynthetic pathway crosstalk. Nat Chem Biol 9, 818–825 (2013). https://doi.org/10.1038/nchembio.1366

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1366

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing