Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Re-engineering protein interfaces yields copper-inducible ferritin cage assembly

Abstract

The ability to chemically control protein-protein interactions would allow the interrogation of dynamic cellular processes and lead to a better understanding and exploitation of self-assembling protein architectures. Here we introduce a new engineering strategy—reverse metal-templated interface redesign (rMeTIR)—that transforms a natural protein-protein interface into one that only engages in selective response to a metal ion. We have applied rMeTIR to render the self-assembly of the cage-like protein ferritin controllable by divalent copper binding, which has allowed the study of the structure and stability of the isolated ferritin monomer, the demonstration of the primary role of conserved hydrogen-bonding interactions in providing geometric specificity for cage assembly and the uniform chemical modification of the cage interior under physiological conditions. Notably, copper acts as a structural template for ferritin assembly in a manner that is highly reminiscent of RNA sequences that template virus capsid formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparative schemes for MeTIR and rMeTIR.
Figure 2: The ferritin cage architecture and intersubunit interactions in the C2 interface.
Figure 3: Solution assembly properties of MIC1.
Figure 4: Key intersubunit interactions in the C2 interface of the MIC1 cage in the presence and absence of copper.
Figure 5: Secondary structure and stability of MIC1.
Figure 6: The structure of dansyl-modified Cys53MIC1 cage.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Klemm, J.D., Schreiber, S.L. & Crabtree, G.R. Dimerization as a regulatory mechanism in signal transduction. Annu. Rev. Immunol. 16, 569–592 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Fegan, A., White, B., Carlson, J.C.T. & Wagner, C.R. Chemically controlled protein assembly: techniques and applications. Chem. Rev. 110, 3315–3336 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Corson, T.W., Aberle, N. & Crews, C.M. Design and applications of bifunctional small molecules: Why two heads are better than one. ACS Chem. Biol. 3, 677–692 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jones, S. & Thornton, J.M. Principles of protein-protein interactions. Proc. Natl. Acad. Sci. USA 93, 13–20 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kortemme, T. & Baker, D. Computational design of protein-protein interactions. Curr. Opin. Chem. Biol. 8, 91–97 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Spencer, D.M., Wandless, T.J., Schreiber, S.L. & Crabtree, G.R. Controlling signal transduction with synthetic ligands. Science 262, 1019–1024 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Farrar, M.A., Alberola-lla, J. & Perlmutter, R.M. Activation of the Raf-1 kinase cascade by coumermycin-induced dimerization. Nature 383, 178–181 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Lin, H., Abida, W.M., Sauer, R.T. & Cornish, V.W. Dexamethasone-methotrexate: an efficient chemical inducer of protein dimerization in vivo. J. Am. Chem. Soc. 122, 4247–4248 (2000).

    Article  CAS  Google Scholar 

  9. Gendreizig, S., Kindermann, M. & Johnsson, K. Induced protein dimerization in vivo through covalent labeling. J. Am. Chem. Soc. 125, 14970–14971 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Stankunas, K. et al. Conditional protein alleles using knockin mice and a chemical inducer of dimerization. Mol. Cell 12, 1615–1624 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Hussey, S.L., Muddana, S.S. & Peterson, B.R. Synthesis of a beta-estradiol-biotin chimera that potently heterodimerizes estrogen receptor and streptavidin proteins in a yeast three-hybrid system. J. Am. Chem. Soc. 125, 3692–3693 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Guo, Z., Zhou, D.M. & Schultz, P.G. Designing small-molecule switches for protein-protein interactions. Science 288, 2042–2045 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Salgado, E.N., Faraone-Mennella, J. & Tezcan, F.A. Controlling protein-protein interactions through metal coordination: assembly of a 16-helix bundle protein. J. Am. Chem. Soc. 129, 13374–13375 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Salgado, E.N., Lewis, R.A., Faraone-Mennella, J. & Tezcan, F.A. Metal-mediated self-assembly of protein superstructures: Influence of secondary interactions on protein oligomerization and aggregation. J. Am. Chem. Soc. 130, 6082–6084 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Salgado, E.N., Lewis, R.A., Mossin, S., Rheingold, A.L. & Tezcan, F.A. Control of protein oligomerization symmetry by metal coordination: C2 and C3 symmetrical assemblies through CuII and NiII coordination. Inorg. Chem. 48, 2726–2728 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Laganowsky, A. et al. An approach to crystallizing proteins by metal-mediated synthetic symmetrization. Protein Sci. 20, 1876–1890 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu, X. & Theil, E.C. Ferritins: Dynamic management of biological iron and oxygen chemistry. Acc. Chem. Res. 38, 167–175 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Tanaka, S. et al. Atomic-level models of the bacterial carboxysome shell. Science 319, 1083–1086 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Douglas, T. & Young, M. Viruses: making friends with old foes. Science 312, 873–875 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Zlotnick, A. To build a virus capsid—an equilibrium-model of the self-assembly of polyhedral protein complexes. J. Mol. Biol. 241, 59–67 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Stefanini, S., Vecchini, P. & Chiancone, E. On the mechanism of horse spleen apoferritin assembly–a sedimentation-velocity and circular-dichroism study. Biochemistry 26, 1831–1837 (1987).

    Article  CAS  PubMed  Google Scholar 

  22. Gerl, M., Jaenicke, R., Smith, J.M.A. & Harrison, P.M. Self-assembly of apoferritin from horse spleen after reversible chemical modification with 2,3-dimethylmaleic anhydride. Biochemistry 27, 4089–4096 (1988).

    Article  CAS  PubMed  Google Scholar 

  23. Vriezema, D.M. et al. Self-assembled nanoreactors. Chem. Rev. 105, 1445–1489 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Wong, K.K.W., Douglas, T., Gider, S., Awschalom, D.D. & Mann, S. Biomimetic synthesis and characterization of magnetic proteins (magnetoferritin). Chem. Mater. 10, 279–285 (1998).

    Article  CAS  Google Scholar 

  25. Butts, C.A. et al. Directing noble metal ion chemistry within a designed ferritin protein. Biochemistry 47, 12729–12739 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Abe, S. et al. Polymerization of phenylacetylene by rhodium complexes within a discrete space of apo-ferritin. J. Am. Chem. Soc. 131, 6958–6960 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Aime, S., Frullano, L. & Crich, S.G. Compartmentalization of a gadolinium complex in the apoferritin cavity: a route to obtain high relaxivity contrast agents for magnetic resonance imaging. Angew. Chem. Int. Ed. Engl. 41, 1017–1019 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Uchida, M. et al. Targeting of cancer cells with ferrimagnetic ferritin cage nanoparticles. J. Am. Chem. Soc. 128, 16626–16633 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Comellas-Aragonès, M. et al. A virus-based single-enzyme nanoreactor. Nat. Nanotechnol. 2, 635–639 (2007).

    Article  PubMed  CAS  Google Scholar 

  30. Wörsdörfer, B., Woycechowsky, K.J. & Hilvert, D. Directed evolution of a protein container. Science 331, 589–592 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Uchida, M. et al. Biological containers: protein cages as multifunctional nanoplatforms. Adv. Mater. 19, 1025–1042 (2007).

    Article  CAS  Google Scholar 

  32. Johnson, E., Cascio, D., Sawaya, M.R., Gingery, M. & Schroeder, I. Crystal structures of a tetrahedral open pore ferritin from the hyperthermophilic archaeon Archaeoglobus fulgidus. Structure 13, 637–648 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Bancroft, J.B. The self-assembly of spherical plant viruses. Adv. Virus Res. 16, 99–134 (1970).

    Article  CAS  PubMed  Google Scholar 

  34. Dalmau, M., Lim, S.R. & Wang, S.W. Design of a pH-dependent molecular switch in a caged protein platform. Nano Lett. 9, 160–166 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Lawson, D.M. et al. Solving the structure of human H-ferritin by genetically engineering intermolecular crystal contacts. Nature 349, 541–544 (1991).

    Article  CAS  PubMed  Google Scholar 

  36. Webb, B., Frame, J., Zhao, Z., Lee, M.L. & Watt, G.D. Molecular entrapment of small molecules within the interior of horse spleen ferritin. Arch. Biochem. Biophys. 309, 178–183 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Brodin, J.D. et al. Evolution of metal selectivity in templated protein interfaces. J. Am. Chem. Soc. 132, 8610–8617 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Salgado, E.N. et al. Metal-templated design of protein interfaces. Proc. Natl. Acad. Sci. USA 107, 1827–1832 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Hempstead, P.D. et al. Comparison of the three-dimensional structures of recombinant human H and horse L ferritins at high resolution. J. Mol. Biol. 268, 424–448 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Santambrogio, P. et al. Effects of modifications near the 2-, 3- and 4-fold symmetry axes an human ferritin renaturation. Biochem. J. 322, 461–468 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang, Y. & Orner, B.P. Self-assembly in the ferritin nano-cage protein superfamily. Int. J. Mol. Sci. 12, 5406–5421 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Waldron, K.J. & Robinson, N.J. How do bacterial cells ensure that metalloproteins get the correct metal? Nat. Rev. Microbiol. 7, 25–35 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Swift, J. et al. Design of functional ferritin-like proteins with hydrophobic cavities. J. Am. Chem. Soc. 128, 6611–6619 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Mines, G.A., Pascher, T., Lee, S.C., Winkler, J.R. & Gray, H.B. Cytochrome c folding triggered by electron transfer. Chem. Biol. 3, 491–497 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Jones, T., Spencer, R. & Walsh, C. Mechanism and kinetics of iron release from ferritin by dihydroflavins and dihydroflavin analogs. Biochemistry 17, 4011–4017 (1978).

    Article  CAS  PubMed  Google Scholar 

  46. Treffry, A., Hawkins, C., Williams, J.M., Guest, J.R. & Harrison, P.M. Lability of iron at the dinuclear centres of ferritin studied by competition with four chelators. J. Biol. Inorg. Chem. 1, 49–60 (1996).

    Article  CAS  Google Scholar 

  47. Yang, D. & Nagayama, K. Permeation of small molecules into the cavity of ferritin as revealed by proton nuclear-magnetic-resonance relaxation. Biochem. J. 307, 253–256 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Takagi, H., Shi, D.S., Ha, Y., Allewell, N.M. & Theil, E.C. Localized unfolding at the junction of three ferritin subunits - A mechanism for iron release? J. Biol. Chem. 273, 18685–18688 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Butler, P.J.G. Assembly of regular viruses. Int. Rev. Biochem. 25, 205–237 (1979).

    CAS  Google Scholar 

  50. Frausto da Silva, J.J.R. & Williams, R.J.P The Biological Chemistry of the Elements (Oxford University Press, Oxford, 2001).

  51. Blackwell, J.R. & Horgan, R. A novel strategy for production of a highly expressed recombinant protein in an active form. FEBS Lett. 295, 10–12 (1991).

    Article  CAS  PubMed  Google Scholar 

  52. Schuck, P. A model for sedimentation in inhomogeneous media. I. Dynamic density gradients from sedimenting co-solutes. Biophys. Chem. 108, 187–200 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. García de la Torre, J., Huertas, M.L. & Carrasco, B. Calculation of hydrodynamic properties of globular proteins from their atomic-level structure. Biophys. J. 78, 719–730 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Pace, N.C., Shirley, B.A. & Thomson, J.A. in Protein Structure: A Practical Approach (ed. Creighton, T.F.) 311–330 (IRL Press, Oxford, 1990).

  55. John, D.M. & Weeks, K.M. van't Hoff enthalpies without baselines. Protein Sci. 9, 1416–1419 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Winn, M.D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vagin, A. & Teplyakov, A. MOLREP: an automated program for molecular replacement. J. Appl. Crystallogr. 30, 1022–1025 (1997).

    Article  CAS  Google Scholar 

  58. Murshudov, G.N., Vagin, A. & Dodson, E. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  CAS  Google Scholar 

  60. DeLano, W.L. The PYMOL Molecular Graphics System (http://www.pymol.org/), 2003.

  61. Laskowski, R.A., Macarthur, M.W., Moss, D.S. & Thornton, J.M. Procheck—A program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy (Division of Materials Sciences, Office of Basic Energy Sciences, Award DE-FG02-10ER46677 to F.A.T.). F.A.T. was additionally supported by the Beckman Foundation, the Sloan Foundation and the National Science Foundation (CHE-0908115). Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource, operated by Stanford University on behalf of the Department of Energy. We thank J. Brodin for experimental assistance with TEM measurements and J. Faraone Mennella for illustrations.

Author information

Authors and Affiliations

Authors

Contributions

D.J.E.H. designed and performed experiments, analyzed data and co-wrote the paper. K.M.K. performed experiments. F.A.T. conceived and directed the project, analyzed data and wrote the paper.

Corresponding author

Correspondence to F Akif Tezcan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results (PDF 8656 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huard, D., Kane, K. & Tezcan, F. Re-engineering protein interfaces yields copper-inducible ferritin cage assembly. Nat Chem Biol 9, 169–176 (2013). https://doi.org/10.1038/nchembio.1163

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1163

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing