Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Exchange-enhanced reactivity in bond activation by metal–oxo enzymes and synthetic reagents

A Corrigendum to this article was published on 22 May 2012

This article has been updated

Abstract

Reactivity principles based on orbital overlap and bonding/antibonding interactions are well established to describe the reactivity of organic species, and atomic structures are typically predicted by Hund's rules to have maximum single-electron occupancy of degenerate orbitals in the ground state. Here, we extend the role of exchange to transition states and discuss how, for reactions and kinetics of bioinorganic species, the analogue of Hund's rules is exchange-controlled reactivity. Pathways that increase the number of unpaired and spin-identical electrons on a metal centre will be favoured by exchange stabilization. Such exchange-enhanced reactivity endows transition states with a stereochemistry different from that observed in cases that are not exchange-enhanced, and is in good agreement with the reactivity observed for iron-based enzymes and synthetic analogues. We discuss the interplay between orbital- and exchange-controlled principles, and how this depends on the identity of the transition metal, its oxidation number and its coordination sphere.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gas-phase energy profiles calculated with B3LYP.
Figure 2: Orbital occupancy-evolution diagrams during H-abstraction processes and corresponding orbital-selection rules for predicting transition state structures.
Figure 3: Energy profiles and orbital occupancy-evolution diagrams.

Similar content being viewed by others

Change history

  • 18 April 2012

    In the version of this Article originally published, in Fig. 1d the energy levels 4P and 6P were interchanged. Also, the start of the final sentence of the section "Interplay of exchange and orbital promotion energies" should have read: "Finally, S= 5/2 becomes virtually degenerate with the ground state...". These errors have been corrected in the online versions of the Article.

References

  1. Woodward, R. B. & Hoffmann, R. The Conservation of Orbital Symmetry (Verlag Chemie, 1970).

    Google Scholar 

  2. Fukui, K., Yonezawa, T. & Shingu, H. A molecular orbital theory of reactivity in aromatic hydrocarbons. J. Chem. Phys. 20, 722–725 (1952).

    Article  CAS  Google Scholar 

  3. Shaik, S. & Hiberty, P. C. A Chemist's Guide to Valence Bond Theory (Wiley, 2008).

    Google Scholar 

  4. de Jong, G. T. & Bickelhaupt, F. M. Transition-state energy and position along the reaction coordinate in an extended activation strain model. ChemPhysChem 8, 1170–1181 (2007).

    Article  CAS  Google Scholar 

  5. Hirao, H., Kumar, D., Thiel, W. & Shaik, S. Two states and two more in the mechanisms of hydroxylation and epoxidation by cytochrome P450. J. Am. Chem. Soc. 127, 13007–13018 (2005).

    Article  CAS  Google Scholar 

  6. Kumar, D., Hirao, H., Que, L. Jr & Shaik, S. Theoretical investigation of C–H hydroxylation by (N4Py)FeIVO2+: An oxidant more powerful than P450? J. Am. Chem. Soc. 127, 8026–8027 (2005).

    Article  CAS  Google Scholar 

  7. Hirao, H., Kumar, D., Que, L. Jr & Shaik, S. Two-state reactivity in alkane hydroxylation by non-heme iron-oxo complexes. J. Am. Chem. Soc. 128, 8590–8606 (2006).

    Article  CAS  Google Scholar 

  8. Shaik, S., Hirao, H. & Kumar, D. Reactivity of high-valent iron–oxo species in enzymes and synthetic reagents: A tale of many states. Acc. Chem. Res. 40, 532–542 (2007).

    Article  CAS  Google Scholar 

  9. Janardanan, D., Wang, Y., Schyman, P., Que, L. Jr. & Shaik, S. The fundamental role of exchange-enhanced reactivity in C–H activation by S = 2 oxo iron(IV) complexes. Angew. Chem. Int. Ed. 49, 3342–3345 (2010).

    Article  CAS  Google Scholar 

  10. de Visser, S. P. Propene activation by the oxo–iron active species of taurine/α-ketoglutarate dioxygenase (TauD) enzyme. How does the catalysis compare to heme-enzymes? J. Am. Chem. Soc. 128, 9813–9824 (2006).

    Article  CAS  Google Scholar 

  11. Johansson, A. J., Blomberg, M. R. A. & Siegbahn, P. E. M. Quantum chemical modeling of the oxidation of dihydroanthracene by the biomimetic nonheme iron catalyst [(TMC)FeIV(O)]2+. J. Phys. Chem. C. 111, 12397–12406 (2007).

    Article  CAS  Google Scholar 

  12. Bernasconi, L., Louwerse, M. J. & Baerends, E. J. The role of equatorial and axial ligands in promoting the activity of non-heme oxidoiron(IV) catalysts in alkane hydroxylation. Eur. J. Inorg. Chem. 3023–3033 (2007).

  13. Wang, Y. & Han, K. Steric hindrance effect of the equatorial ligand on Fe(IV)O and Ru(IV)O complexes: a density functional study. J. Biol. Inorg. Chem. 351–359 (2010).

  14. Ye, S. & Neese, F. Quantum chemical studies of C–H activation reactions by high-valent nonheme iron centers. Curr. Opin. Chem. Biol. 13, 89–98 (2009).

    Article  CAS  Google Scholar 

  15. Dhuri, S. N. et al. Experiment and theory reveal the fundamental difference between two-state and single-state reactivity patterns in nonheme FeIV=O versus RuIV=O oxidants. Angew. Chem. Int. Ed. 47, 3356–3359 (2008).

    Article  CAS  Google Scholar 

  16. Cho, K.-B., Shaik, S. & Nam, W. Theoretical predictions of a highly reactive non-heme Fe(IV)=O species with a high-spin ground state. Chem. Commun. 46, 4511–4513 (2010).

    Article  CAS  Google Scholar 

  17. Hirao, H., Que, L. Jr, Nam, W. & Shaik, S. A two-state reactivity rationale for counter intuitive axial ligand effects on the C–H activation reactivity of nonheme FeIV=O oxidants. Chem. Eur. J. 14, 1740–1756 (2008).

    Article  CAS  Google Scholar 

  18. de Visser, S. P. What factors influence the ratio of C–H hydroxylation versus C=C epoxidation by a nonheme cytochrome P450 biomimetic? J. Am. Chem. Soc. 128, 15809–15818 (2006).

    Article  CAS  Google Scholar 

  19. Decker, A. et al. Spectroscopic and quantum chemical studies on low-spin FeIV=O complexes: Fe−O bonding and its contributions to reactivity. J. Am. Chem. Soc. 129, 15983–15996 (2007).

    Article  CAS  Google Scholar 

  20. Ortiz de Montellano, P. R. (ed.) Cytochrome P450: Structure, Mechanism, and Biochemistry 3rd edn (Kluwer Academic/Plenum, 2005).

    Book  Google Scholar 

  21. Nam, W. High-valent iron(IV)–oxo complexes of heme and non-heme ligands in oxygenation reactions. Acc. Chem. Res. 40, 522–531 (2007).

    Article  CAS  Google Scholar 

  22. Que, L. Jr The road to non-heme oxoferryls and beyond. Acc. Chem. Res. 40, 493–500 (2007).

    Article  CAS  Google Scholar 

  23. Krebs, C., Fujimori, D. G., Walsh, C. T. & Bollinger, J. M. Jr Non-heme Fe(IV)–oxo intermediates. Acc. Chem. Res. 40, 484–492 (2007).

    Article  CAS  Google Scholar 

  24. Sinnecker, S. et al. Spectroscopic and computational evaluation of the structure of the high-spin Fe(IV)–oxo intermediates in taurine: α-ketoglutarate dioxygenase from Escherichia coli and its His99Ala ligand variant. J. Am. Chem. Soc. 129, 6168–6179 (2007).

    Article  CAS  Google Scholar 

  25. Kovaleva, E. G., Neibergall, M. B., Chakrabatry, S. & Lipscomb, D. J. Finding intermediates in the O2 activation pathways of non-heme iron oxygenases. Acc. Chem. Res. 40, 475–483 (2007).

    Article  CAS  Google Scholar 

  26. Murray, L. J. & Lippard, S. J. Substrate trafficking and dioxygen activation in bacterial multicomponent monooxygesases. Acc. Chem. Res. 40, 466–474 (2007).

    Article  CAS  Google Scholar 

  27. Neidig, M. L. et al. Spectroscopic and electronic structure studies of aromatic electrophilic attack and hydrogen-atom abstraction by non-heme iron enzymes. Proc. Natl Acad. Sci. USA 103, 12966–12973 (2006).

    Article  CAS  Google Scholar 

  28. Bassan, A., Blomberg, M. R. A. & Siegbahn, P. E. M. Mechanism of dioxygen cleavage in tetrahydrobiopterin-dependent amino acid hydroxylases. Chem. Eur. J. 9, 106–115 (2003).

    Article  CAS  Google Scholar 

  29. Xue, G., De Hont, R., Münck, E. & Que, L. Jr Million-fold activation of the [Fe2(μ-O)2] diamond core for C–H bond cleavage. Nature Chem. 2, 400–405 (2010).

    Article  CAS  Google Scholar 

  30. Schwarz, H. On the spin-forbiddeness of gas-phase ion–molecule reactions: A fruitful intersection of experimental and theoretical studies. Int. J. Mass. Spectrom. 237, 75–105 (2004).

    Article  CAS  Google Scholar 

  31. Carter, E. A. & Goddard, W. A. III Relationships between bond energies in coordinatively unsaturated and coordinatively saturated transition-metal complexes: A quantitative guide for single, double, and triple bonds. J. Phys. Chem. 92, 5679–5683 (1988).

    Article  CAS  Google Scholar 

  32. Schilling, J. B., Goddard, W. A. & Beauchamp, J. L. Theoretical studies of transition-metal hydrides. 2. CaH+ through ZnH+. J. Phys. Chem. 91, 5616–5623 (1987).

    Article  CAS  Google Scholar 

  33. Carter, E. A. & Goddard, W. A. III Early- versus late-transition-metal-oxo bonds: The electronic structure of VO+ and RuO+. J. Phys. Chem. 92, 2109–2115 (1988).

    Article  CAS  Google Scholar 

  34. Filatov, M., Harris, N. & Shaik, S. A theoretical study of electronic factors affecting hydroxylation by model ferryl complexes of cytochrome P-450 and horseradish peroxidase. J. Chem. Soc. Perkin Trans. 2, 399–410 (1999).

    Article  Google Scholar 

  35. Ballhausen, C. J. Quantum mechanics and chemical bonding in inorganic complexes. J. Chem. Educ. 56, 294–297 (1979).

    Article  CAS  Google Scholar 

  36. Van Vleck, J. H. Valence strength and the magnetism of complex salts. J. Chem. Phys. 3, 807–813 (1935).

    Article  CAS  Google Scholar 

  37. Goddard, W. A. III & Harding, L. B. The description of chemical bonding from ab initio calculations. Annu. Rev. Phys. Chem. 29, 363–396 (1978).

    Article  CAS  Google Scholar 

  38. Cornehl, H. H., Heinemann, C., Schröder, D. & Schwarz, H. Gas-phase reactivity of lanthanide cations with hydrocarbons. Organometallics 14, 992–999 (1995).

    Article  CAS  Google Scholar 

  39. Carroll, J. J. et al. Gas phase reactions of second-row transition metal atoms with small hydrocarbons: Experiment and theory. J. Phys. Chem. 99, 13955–13969 (1995).

    Article  CAS  Google Scholar 

  40. Schultz, R. H., Elkind, J. L. & Armentrout, P. B. Electronic effects in C–H and C–C bond activation: State-specific reactions of Fe+(6D, 4F) with methane, ethane and propane. J. Am. Chem. Soc. 110, 411–423 (1988).

    Article  CAS  Google Scholar 

  41. Bushnell, J. E., Kemper, P. R., Maitre, P. & Bowers, M. T. Insertion of Sc+ into H2: The first example of cluster-mediated σ-bond activation by a transition metal center. J. Am. Chem. Soc. 116, 9710–9718 (1994).

    Article  CAS  Google Scholar 

  42. Chen, H., Song, J., Lai, W. Z., Wu, W. & Shaik, S. Multiple low-lying states for compound I of P450cam and chloroperoxidase revealed from multireference ab initio QM/MM calculations. J. Chem. Theory Comput. 6, 940–953 (2010).

    Article  CAS  Google Scholar 

  43. Chen, H., Lai, W. Z. & Shaik, S. Exchange-enhanced H-abstraction reactivity of high-valent non-heme iron(IV)–oxo from coupled cluster and density functional theories. J. Phys. Chem. Lett. 1, 1533–1540 (2010).

    Article  CAS  Google Scholar 

  44. Shaik, S., Lai, W. Z., Chen, H. & Wang, Y. The valence bond way: Reactivity patterns of cytochrome P450 enzymes and synthetic analogs. Acc. Chem. Res. 43, 1154–1165 (2010).

    Article  CAS  Google Scholar 

  45. Michel, C. & Baerends, E. J. What singles out the FeO2+ moiety? A density-functional theory study of the methaneto-methanol reaction catalyzed by the first row transition-metal oxide dications MO(H2O)p2+, M = V−Cu. Inorg. Chem. 48, 3628–3638 (2009).

    Article  CAS  Google Scholar 

  46. Filatov, M. & Shaik, S. Theoretical investigation of two-state-reactivity pathways of H−H activation by FeO+: Addition−elimination, “rebound”, and oxene-insertion mechanisms. J. Phys. Chem. A 102, 3835–3846 (1998).

    Article  CAS  Google Scholar 

  47. Schröder, D., Shaik, S. & Schwarz, H. Two-state reactivity as a new concept in organometallic chemistry. Acc. Chem. Res. 33, 139–145 (2000).

    Article  Google Scholar 

  48. Shaik, S. et al. P450 enzymes: Their structure, reactivity, and selectivity—modeled by QM/MM calculations. Chem. Rev. 110, 949–1017 (2010).

    Article  CAS  Google Scholar 

  49. Altun, A., Shaik, S. & Thiel, W. What is the active species of cytochrome P450 during camphor hydroxylation? QM/MM studies of different electronic states of compound I and of reduced and oxidized iron–oxo intermediates. J. Am. Chem. Soc. 129, 8978–8987 (2007).

    Article  CAS  Google Scholar 

  50. Wang, D., Zhang, M., Bühlmann, P. & Que, L. Jr Redox potential and C–H bond cleaving properties of a nonheme Fe(IV)=O complex in aqueous solution. J. Am. Chem. Soc. 132, 7638–7644 (2010).

    Article  CAS  Google Scholar 

  51. Latifi, R., Bagherzadeh, M. & de Visser, S. P. Origin of the correlation of the rate constant of substrate hydroxylation by nonheme iron(IV)-oxo complexes with the bond-dissociation energy of the C–H bond of the substrate. Chem. Eur. J. 15, 6651–6662 (2009).

    Article  CAS  Google Scholar 

  52. Geng, C., Ye, S. & Neese, F. Analysis of reaction channels for alkane hydroxylation by nonheme iron(IV)–oxo complexes. Angew. Chem. Int. Ed. 49, 5717–5720 (2010).

    Article  CAS  Google Scholar 

  53. Brandt, P., Norrby, P.-O., Daly, A. M. & Gilheany, D. G. Chromium–salen-mediated alkene epoxidation: A theoretical and experimental study indicates the importance of spin-surface crossing and the presence of a discrete intermediate. Chem. Eur. J. 8, 4299–4307 (2002).

    Article  CAS  Google Scholar 

  54. Hess, J. S., Leelasubcharoen, S., Rheingold, A. L., Doren, D. J. & Theopold, K. H. Spin surface crossing in chromium-mediated olefin epoxidation with O2 . J. Am. Chem. Soc. 124, 2454–2455 (2002).

    Article  CAS  Google Scholar 

  55. Jin, N. & Groves, J. T. Unusual kinetic stability of a ground-state singlet oxomanganese(V) porphyrin. Evidence for a spin state crossing effect. J. Am. Chem. Soc. 121, 2923–2924 (1999).

    Article  CAS  Google Scholar 

  56. De Angelis, F., Jin, N., Car, R. & Groves, J. T. Electronic structure and reactivity of isomeric oxo–Mn(V) porphyrins: Effects of spin-state crossing and pKa modulation. Inorg. Chem. 45, 4268–4276 (2006).

    Article  CAS  Google Scholar 

  57. Balcells, D., Raynaud, C., Crabtree, R. H. & Eisenstein, O. The rebound mechanism in catalytic C–H oxidation by MnO(tpp)Cl from DFT studies: electronic nature of the active species. Chem. Commun. 744–746 (2008).

  58. Khenkin, A. M., Kumar, D., Shaik, S. & Neumann, R. Characterization of manganese(V)−oxo polyoxometalate intermediates and their properties in oxygen-transfer reactions. J. Am. Chem. Soc. 128, 15451–15460 (2006).

    Article  CAS  Google Scholar 

  59. Abashkin, Y. G., Collins, J. R. & Burt, S. K. (Salen) Mn(III)-catalyzed epoxidation reaction as a multichannel process with different spin states. Electronic tuning of asymmetric catalysis: A theoretical study. Inorg. Chem. 40, 4040–4048 (2001).

    Article  CAS  Google Scholar 

  60. Balcells, D., Clot, E. & Eisenstein, O. C–H bond activation in transition metal species from a computational perspective. Chem. Rev. 110, 749–823 (2010).

    Article  CAS  Google Scholar 

  61. Song, W. J. et al. Synthesis, characterization, and reactivities of manganese(V)−oxo porphyrin complexes. J. Am. Chem. Soc. 129, 1268–1277 (2007).

    Article  CAS  Google Scholar 

  62. Clemmer, D. E., Chen, Y.-M., Khan, F. A. & Armentrout, P. B. State-specific reactions of Fe+ (a6D, a4F) with D2O and reactions of FeO+ with D2 . J. Phys. Chem. 98, 6522–6529 (1994).

    Article  CAS  Google Scholar 

  63. Poli, R. & Harvey, J. N. Spin-forbidden chemical reactions of transition metal compounds. New ideas and new computational techniques. Chem. Soc. Rev. 32, 1–8 (2003).

    Article  CAS  Google Scholar 

  64. Shaik, S., Danovich, D., Schröder, D. & Schwarz, H. Two-state reactivity in organometallic gas-phase ion chemistry. Helv. Chim. Acta 78, 1393–1407 (1995).

    Article  CAS  Google Scholar 

  65. Mayer, J. M. Hydrogen atom abstraction by metal–oxo complexes: Understanding the analogy with organic radical reactions. Acc. Chem. Res. 31, 441–450 (1998).

    Article  CAS  Google Scholar 

  66. Sastri, C. V. et al. Axial ligand tuning of a nonheme iron(IV)–oxo unit for hydrogen atom abstraction. Proc. Natl Acad. Sci. USA 104, 19181–19186 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by an ISF grant to S.S. (ISF 53/09). Collaborations (since 2005) with L. Que and W. Nam are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sason Shaik.

Supplementary information

Supplementary information

Supplementary information (PDF 308 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaik, S., Chen, H. & Janardanan, D. Exchange-enhanced reactivity in bond activation by metal–oxo enzymes and synthetic reagents. Nature Chem 3, 19–27 (2011). https://doi.org/10.1038/nchem.943

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.943

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing