Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Halogen bonds as orthogonal molecular interactions to hydrogen bonds

Abstract

Halogen bonds (X-bonds) are shown to be geometrically perpendicular to and energetically independent of hydrogen bonds (H-bonds) that share a common carbonyl oxygen acceptor. This orthogonal relationship is accommodated by the in-plane and out-of-plane electronegative potentials of the oxygen, which are differentially populated by H- and X-bonds. Furthermore, the local conformation of a peptide helps to define the geometry of the H-bond and thus the oxygen surface that is accessible for X-bonding. These electrostatic and steric forces conspire to impose a strong preference for the orthogonal geometry of X- and H-bonds. Thus, the optimum geometry of an X-bond can be predicted from the pattern of H-bonds in a folded protein, enabling X-bonds to be introduced to improve ligand affinities without disrupting these structurally important interactions. This concept of orthogonal molecular interactions can be exploited for the rational design of halogenated ligands as inhibitors and drugs, and in biomolecular engineering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: H- and X-bond geometries.
Figure 2: Distribution of H- and hX-bonds at the carbonyl oxygen surface in proteins.
Figure 3: Electrostatic potentials and X-bonding interaction energies of the carbonyl oxygen in NEPA (1).
Figure 4: X-bond geometries in β-sheets and α-helices.
Figure 5: Effects of X-bonds and H-bonds on interaction energies of NEPA.

Similar content being viewed by others

References

  1. Barany, G. & Merrifield, R. B. A new amino protecting group removable by reduction. Chemistry of the dithiasuccinoyl (Dts) function. J. Am. Chem. Soc. 99, 7363–7365 (1977).

    Article  CAS  Google Scholar 

  2. Burley, S. K. & Petsko, G. A. Aromatic–aromatic interaction: a mechanism of protein structure stabilization. Science 229, 23–28 (1985).

    Article  CAS  Google Scholar 

  3. Burley, S. K. & Petsko, G. A. Amino-aromatic interactions in proteins. FEBS Lett. 203, 139–143 (1986).

    Article  CAS  Google Scholar 

  4. Paulini, R., Muller, K. & Diederich, F. Orthogonal multipolar interactions in structural chemistry and biology. Angew. Chem. Int. Ed. 44, 1788–1805 (2005).

    Article  CAS  Google Scholar 

  5. Metrangolo, P. & Resnati, G. Halogen versus hydrogen. Science 321, 918–919 (2008).

    Article  CAS  Google Scholar 

  6. Hassel, O. Structural aspects of interatomic charge-transfer bonding. Science 17, 497–502 (1970).

    Article  Google Scholar 

  7. Legon, A. C. Prereactive complexes of dihalogens XY with Lewis bases B in the gas phase: a systematic case for the halogen analogue B···XY of the hydrogen bond B···HX. Angew. Chem. Int. Ed. 38, 2686–2714 (1999).

    Article  CAS  Google Scholar 

  8. Rose, G. D. & Wolfenden, R. Hydrogen bonding, hydrophobicity, packing, and protein structure. Annu. Rev. Biophys. Biomol. Struct. 22, 381–415 (1993).

    Article  CAS  Google Scholar 

  9. Baldwin, R. L. In search of the energetic role of peptide hydrogen bonds. J. Biol. Chem. 278, 17581–17588 (2003).

    Article  CAS  Google Scholar 

  10. Brinck, T., Murray, J. S. & Politzer, P. Surface electrostatic potentials of halogenated methanes as indicators of directional intermolecular interactions. Int. J. Quantum Chem. 44 (S19), 57–64 (1992).

    Article  Google Scholar 

  11. Lommerse, J. P. M., Stone, A. J., Taylor, R. & Allen, F. H. The nature and geometry of intramolecular interactions between halogens and oxygen or nitrogen. J. Am. Chem. Soc. 118, 3108–3116 (1996).

    Article  CAS  Google Scholar 

  12. Metrangolo, P. & Resnati, G. Halogen bonding: a paradigm in supramolecular chemistry. Chem. Eur. J. 7, 2511–2119 (2001).

    Article  CAS  Google Scholar 

  13. Auffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. Halogen bonds in biological molecules. Proc. Natl Acad. Sci. USA 101, 16789–16794 (2004).

    Article  CAS  Google Scholar 

  14. Clark, T., Hennemann, M., Murray, J. S. & Politzer, P. Halogen bonding: the sigma-hole. J. Mol. Model. 13, 291–296 (2007).

    Google Scholar 

  15. Corradi, E., Meille, S. V., Messina, M. T., Metrangolo, P. & Resnati, G. Halogen bonding versus hydrogen bonding in driving self-assembly processes. Angew. Chem. Int. Ed. 39, 1782–1786 (2000).

    Article  CAS  Google Scholar 

  16. Voth, A. R., Hays, F. A. & Ho, P. S. Directing macromolecular conformation by halogen bonds. Proc. Natl Acad. Sci. USA 104, 6188–6193 (2007).

    Article  CAS  Google Scholar 

  17. Politzer, P., Murray, J. S. & Lane, P. Sigma-hole bonding and hydrogen bonding: competitive interactions. Int. J. Quantum Chem. 107, 3046–3052 (2007).

    Article  CAS  Google Scholar 

  18. Lu, Y. X., Zou, J. W., Wang, Y. H., Jiang, Y. J. & Yu, Q.S. Ab initio investigation of the complexes between bromobenzene and several electron donors: Some insights into the magnitude and nature of halogen bonding interactions. J. Phys. Chem. A 111, 10781–10788 (2007).

    Article  CAS  Google Scholar 

  19. Fain, A. V., Berezovskii, I. N., Tchehov, V. O., Ukrainskii, D. L. & Esipova N.G. Double and bifurkated bonds in alpha-helices of globular proteins. Biofizika (Rus.) 46, 969–977 (2001).

    CAS  Google Scholar 

  20. Sun, A., Lauher, J. W. & Goroff, N. S., Preparation of poly(diiododiacetylene), an ordered conjugated polymer of carbon and iodine. Science 312, 1030–1034 (2006).

    Article  CAS  Google Scholar 

  21. Aakeröy, C. et al. Combining halogen bonds and hydrogen bonds in the modular assembly of heteromeric infinite 1-D chains. Chem. Commun. 4236–4238 (2007).

  22. Schmidt, J. R. & Polik, W.F. WebMO <http://www.webmo.net> (2005).

  23. Schmidt, M. W. K. et al. General atomic and molecular electronic structure system. J. Comput. Chem. 14, 1347–1363 (1993).

    Article  CAS  Google Scholar 

  24. Voth, A. R. & Ho, P. S. The role of halogen bonding in inhibitor recognition and binding by protein kinases. Curr. Top. Med. Chem. 7, 1336–1348 (2007).

    Article  CAS  Google Scholar 

  25. Berman, H. M. et al. The protein data bank. Nucleic Acids Res. 28, 235–242 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Maximiliano Vallejos and the 2005 Biophysics class at Oregon State University for their help in the ab initio calculations. We also thank P. Andrew Karplus for helpful discussion. This work was funded in part by grants from the National Institutes of Health (RIGM62957) and from the Oregon Medical Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

A.R.V. and P.K. contributed equally to this work. P.S.H., A.R.V. and P.K. analysed and interpreted results, and contributed to writing the manuscript. K.O. performed calculations for this study.

Corresponding author

Correspondence to P. Shing Ho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voth, A., Khuu, P., Oishi, K. et al. Halogen bonds as orthogonal molecular interactions to hydrogen bonds. Nature Chem 1, 74–79 (2009). https://doi.org/10.1038/nchem.112

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.112

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing