Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cool-1 functions as an essential regulatory node for EGFreceptor- and Src-mediated cell growth

Abstract

Cool-1 (cloned-out of library 1) has a key role in regulating epidermal growth factor receptor (EGFR) degradation. Here, we show that Cool-1 performs this function by functioning as both an upstream activator and downstream target for Cdc42. EGF-dependent phosphorylation of Cool–1 enables it to act as a nucleotide exchange factor for Cdc42 and to form a complex with the E3 ligase Cbl, thus regulating Cbl-catalysed EGFR degradation. The EGF-dependent phosphorylation is normally transient; however, Cool-1 phosphorylation is sustained in cells expressing v–Src and is essential for cellular transformation, as well as for v-Src-induced tumour formation in mice. These findings demonstrate that the regulated phosphorylation of Cool-1 is necessary to maintain the balance between normal signalling by EGFR and Src versus aberrant growth and transformation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Both Cdc42 and Cool-1 are necessary for full EGF-stimulated ERK activation.
Figure 2: EGF stimulates the phosphorylation of Cool-1.
Figure 3: Phosphorylation activates Cool-1.
Figure 4: Phosphorylated Cool-1 blocks EGFR endocytosis.
Figure 5: Cool-1 is necessary for the formation of cellular aggregates in v-Src-expressing NIH3T3 cells.
Figure 6: Cool-1 is necessary for v-Src-induced cell proliferation.
Figure 7: Phosphorylated Cool-1 enhances v-Src-induced colony formation in soft-agar and tumour formation in mice.
Figure 8: Schematic representation depicting the effects of phosphorylated Cool-1 on EGFR homeostasis.

Similar content being viewed by others

References

  1. Blume-Jensen, P. & Hunter, T. Oncogenic kinase signalling. Nature 411, 355–365 (2001).

    Article  CAS  Google Scholar 

  2. Libermann, T. A. et al. Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumours of glial origin. Nature 313, 144–147 (1985).

    Article  CAS  Google Scholar 

  3. Pavelic, K., Banjac, Z., Pavelic, J. & Spaventi, S. Evidence for a role of EGF receptor in the progression of human lung carcinoma. Anticancer Res. 13, 1133–1137 (1993).

    CAS  PubMed  Google Scholar 

  4. Joazeiro, C. A. et al. The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 286, 309–312 (1999).

    Article  CAS  Google Scholar 

  5. Levkowitz, G. et al. Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol. Cell 4, 1029–1040 (1999).

    Article  CAS  Google Scholar 

  6. Waterman, H., Levkowitz, G., Alroy, I. & Yarden, Y. The RING finger of c-Cbl mediates desensitization of the epidermal growth factor receptor. J. Biol. Chem. 274, 22151–22154 (1999).

    Article  CAS  Google Scholar 

  7. Duan, L. et al. Cbl-mediated ubiquitinylation is required for lysosomal sorting of epidermal growth factor receptor but is dispensable for endocytosis. J. Biol. Chem. 278, 28950–28960 (2003).

    Article  CAS  Google Scholar 

  8. Marmor, M. D. & Yarden, Y. Role of protein ubiquitylation in regulating endocytosis of receptor tyrosine kinases. Oncogene 23, 2057–2070 (2004).

    Article  CAS  Google Scholar 

  9. Thien, C. B. & Langdon, W. Y. Cbl: many adaptations to regulate protein tyrosine kinases. Nature Rev. Mol. Cell Biol. 2, 294–307 (2001).

    Article  CAS  Google Scholar 

  10. Jiang, X. & Sorkin, A. Epidermal growth factor receptor internalization through clathrin-coated pits requires Cbl RING finger and proline-rich domains but not receptor polyubiquitylation. Traffic 4, 529–543 (2003).

    Article  CAS  Google Scholar 

  11. Soubeyran, P., Kowanetz, K., Szymkiewicz, I., Langdon, W. Y. & Dikic, I. Cbl–CIN85–endophilin complex mediates ligand-induced downregulation of EGF receptors. Nature 416, 183–187 (2002).

    Article  CAS  Google Scholar 

  12. Wu, W. J., Tu, S. & Cerione, R. A. Activated Cdc42 sequesters c-Cbl and prevents EGF receptor degradation. Cell 114, 715–725 (2003).

    Article  CAS  Google Scholar 

  13. Bagrodia, S., Taylor, S. J., Jordon, K. A., Van Aelst, L. & Cerione, R. A. A novel regulator of p21-activated kinases. J. Biol. Chem. 273, 23633–23636 (1998).

    Article  CAS  Google Scholar 

  14. Manser, E. et al. PAK kinases are directly coupled to the PIX family of nucleotide exchange factors. Mol. Cell 1, 183–192 (1998).

    Article  CAS  Google Scholar 

  15. Oh, W. K. et al. Cloning of a SH3 domain-containing proline-rich protein, p85SPR, and its localization in focal adhesion. Biochem. Biophys. Res. Commun. 235, 794–798 (1997).

    Article  CAS  Google Scholar 

  16. Cerione, R. A. & Zheng, Y. The Dbl family of oncogenes. Curr. Opin. Cell Biol. 8, 216–222 (1996).

    Article  CAS  Google Scholar 

  17. Whitehead, I. P., Campbell, S., Rossman, K. L. & Der, C. J. Dbl family proteins. Biochim. Biophys. Acta. 1332, F1–F23 (1997).

    CAS  PubMed  Google Scholar 

  18. Feng, Q., Baird, D. & Cerione, R. A. Novel regulatory mechanisms for the Dbl family guanine nucleotide exchange factor Cool-2/alpha-Pix. EMBO J. 23, 3492–3504 (2004).

    Article  CAS  Google Scholar 

  19. Baird, D., Feng, Q. & Cerione, R. A. The Cool-2/alpha-Pix protein mediates a Cdc42-Rac signaling cascade. Curr. Biol. 15, 1–10 (2005).

    Article  CAS  Google Scholar 

  20. Feng, Q., Albeck, J. G., Cerione, R. A. & Yang, W. Regulation of the Cool/Pix proteins: key binding partners of the Cdc42/Rac targets, the p21-activated kinases. J. Biol. Chem. 277, 5644–5650 (2002).

    Article  CAS  Google Scholar 

  21. Flanders, J. A. et al. The Cbl proteins are binding partners for the Cool/Pix family of p21-activated-kinase-binding proteins. FEBS Lett. 550, 119–123 (2003).

    Article  CAS  Google Scholar 

  22. Guan, J. L. & Shalloway, D. Regulation of focal adhesion-associated protein tyrosine kinase by both cellular adhesion and oncogenic transformation. Nature 358, 690–692 (1992).

    Article  CAS  Google Scholar 

  23. Jozic, D. et al. Cbl promotes clustering of endocytic adaptor proteins. Nature Struct. Mol. Biol. 12, 972–979 (2005).

    Article  CAS  Google Scholar 

  24. Levitzki, A. & Gazit, A. Tyrosine kinase inhibition: an approach to drug development. Science 267, 1782–1788 (1995).

    Article  CAS  Google Scholar 

  25. Wilson, L. K. & Parsons, S. J. Enhanced EGF mitogenic response is associated with enhanced tyrosine phosphorylation of specific cellular proteins in fibroblasts overexpressing c-src. Oncogene 5, 1471–1480 (1990).

    CAS  PubMed  Google Scholar 

  26. Schmidt, M. H. H., Husnjak, K., Szymkiewicz, I., Haglund, K. & Dikic, I. Cbl escapes Cdc42-mediated inhibition by downregulation of the adaptor molecules βPix. Oncogene 25, 3071–3078 (2006).

    Article  CAS  Google Scholar 

  27. Johnson, P. J., Coussens, P. M., Danko, A. V. & Shalloway, D. Overexpressed pp60c-src can induce focus formation without complete transformation of NIH 3T3 cells. Mol. Cell Biol. 5, 1073–1083 (1985).

    Article  CAS  Google Scholar 

  28. Park, H. S. et al. Sequential activation of phosphatidylinositol 3-kinase, beta Pix, Rac1, and Nox1 in growth factor-induced production of H2O2. Mol. Cell Biol. 24, 4384–4394 (2004).

    Article  CAS  Google Scholar 

  29. Melkoumian, Z. K., Peng, X., Gan, B., Wu, X. & Guan, J. L. Mechanism of cell cycle regulation by FIP200 in human breast cancer cells. Cancer Res. 65, 6676–6684 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the National Institutes of Health. We also thank C. Westmiller for secretarial assistance.

Author information

Authors and Affiliations

Authors

Contributions

Q.F., D.B., X.P. and T.L. were responsible for experimental work. J.G. contributed reagents and helped with data analysis. R.A.C. was involved in project planning.

Corresponding author

Correspondence to Richard A. Cerione.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2 and S3 (PDF 1742 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, Q., Baird, D., Peng, X. et al. Cool-1 functions as an essential regulatory node for EGFreceptor- and Src-mediated cell growth. Nat Cell Biol 8, 945–956 (2006). https://doi.org/10.1038/ncb1453

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1453

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing