Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Enhancement of strand invasion by oligonucleotides through manipulation of backbone charge

Abstract

The ability of DNA oligonucleotides, neutral peptide nucleic acids (PNAs), and oligonucleotide conjugates to hybridize to inverted repeat sequences within supercoiled double-stranded DNA by Watson-Crick base-pairing is examined. PNAs and oligonucleotide conjugates initiate and maintain strand invasion under more stringent conditions than do unmodified DNA oligonucleotides. PNAs hybridize rapidly and, once bound, hold open a target site allowing oligonucleotides to base-pair to the displaced strand under conditions that would otherwise preclude hybridization. The ability to manipulate hybridization efficiency through different options for the alteration of oligomer charge should have important implications for optimizing sequence-specific recognition of DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nielsen, P.E., Egholm, M., Berg, R.H. and Buchardt, O. 1991. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254: 1497–1500.

    Article  CAS  Google Scholar 

  2. Hanvey, J.C., Peffer, N.J., Bisi, J.E., Thomson, S.A., Cadilla, R., Josey, J.A. et al. 1992. Antisense and anttgene properties of peptide nucleic acids. Science 258: 1481–1485.

    Article  CAS  Google Scholar 

  3. Nielsen, P.E., Egholm, M. and Buchardt, O. 1994. Peptide Nucleic Acid (PNA). A DNA mimic with a peptide backbone. Bioconjugate Chemistry 5: 3–4.

    Article  CAS  Google Scholar 

  4. Corey, D.R. 1995. Accelerated hybridization of chemically modified oligonucleotides to DNA. J. Am. Chem. Soc. 117: 9373–9374.

    Article  CAS  Google Scholar 

  5. Demidov, V.V., Potaman, V.N., Frank-Kamenetskii, M.D., Egholm, M., Buchardt, O., Sonnichsen, S.H. and Nielsen, P.E. 1994. Stability of peptide nucleic acids in human serum and cellular extracts. Biochem. Pharmacol. 48: 1310–1313.

    Article  CAS  Google Scholar 

  6. Egholm, M., Buchardt, O., Christensen, L., Behrens, C., Freier, S.M., Driver, D.A. et al. 1993. PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature 365: 566–568.

    Article  CAS  Google Scholar 

  7. Nielsen, P.E. and Christensen, L. 1996. Strand displacement binding of a duplex-forming homopurine PNA to a homopyrimidine duplex DNA target. J. Am. Chem. Soc. 118: 2287–2288.

    Article  CAS  Google Scholar 

  8. Demidov, V.V., Yavnilovich, M.V., Belotserkovskii, B.P., Frank-Kamenetskii, M.D. and Nielsen, P.E. 1995. Kinetics and mechanism of polyamide (“peptide”) nucleic acid binding to duplex DNA. Proc. Natl. Acad. Sci. USA 92: 2637–2641.

    Article  CAS  Google Scholar 

  9. Boffa, L.C., Carpaneto, E.M. and Allfrey, V.G. 1995. Isolation of active genes containing CAG repeats by DNA strand invasion by a peptide nucleic acid. Proc. Natl. Acad. Sci. USA 92: 1901–1905.

    Article  CAS  Google Scholar 

  10. Orum, H., Nielsen, P.E., Jorgensen, M., Larsson, C., Stanley, C. and Koch, T. 1995. Sequence-specific purification of nucleic acids by PNA controlled hybrid selection. Biotechniques 19: 472–480.

    CAS  PubMed  Google Scholar 

  11. Norton, J.C., Piatyszek, M.A., Wright, W.E., Shay, J.W. and Corey, D.R. 1996. Inhibition of human telomerase activity by peptide nucleic acids. Nature Biotechnology 14: 615–619.

    Article  CAS  Google Scholar 

  12. Lansdorp, P.M., Verwoerd, N.P., van de Rijke, F.M., Dragowska, V., Little, M-T., Dirks, R.W., et al. 1996. Heterogeneity in telomere length of human chromosomes. Hum. Mol. Genetics 5: 685–691.

    Article  CAS  Google Scholar 

  13. Demers, D.B., Curry, E.T., Egholm, M. and Sozer, A.C. 1995. Enhanced PCR amplification of VNTR locus D1S80 using peptide nucleic acid (PNA). Nucl. Acids. Res. 23: 3050–3055.

    Article  CAS  Google Scholar 

  14. Knudsen, H. and Nielsen, P.E. 1996. Antisense properties of duplex and triplex-forming PNAs. Nucl. Acids. Res. 24: 494–500.

    Article  CAS  Google Scholar 

  15. Carlsson, C., Jonsson, M., Norden, B., Dulay, M.T., Zare, R.N., Noolandl, J. et al. 1996. Screening for genetic mutations. Nature 380: 207.

    Article  CAS  Google Scholar 

  16. Iyer, M., Norton, J.C., and Corey, D.R. 1995. Accelerated hybridization of oligonucleotides to duplex DNA. J. Biol. Chem. 270: 14712–14717.

    Article  CAS  Google Scholar 

  17. Jayasena, V.K. and Johnston, B.H. 1993. Complement-stabilized D-loop. J. Mol. Biol. 230: 1015–1024.

    Article  CAS  Google Scholar 

  18. Revet, B.M.J., Sena, E.P. and Zarling, S.A. 1993. Homologous DNA targeting with RecA protein-coated short DNA probes and electron microscope mapping on linear duplex molecules. J. Mol. Biol. 232: 779–791.

    Article  CAS  Google Scholar 

  19. Belotserkovskii, B.P., Krasilnikova, M.M., Veselkov, A.G. and Frank-Kamenetskii, M.D. 1992. Kinetic trapping of H-DNA by oligonucleotide binding. Nucl. Acids. Res. 20: 1903–1908.

    Article  CAS  Google Scholar 

  20. De Mesmaeker, A., Altmann, H-K., Waldner, A., and Wendeborn, S. 1995. Backbone modifications in oligonucleotide and peptide nucleic acid systems. Curr. Op. Struc. Biol. 5: 343–355.

    Article  CAS  Google Scholar 

  21. Muller, V., Takeya, M., Brendel, S., Wittig, B. and Rich, A. 1996. Z-DNA-forming sites within the human ß-globin gene cluster. Proc. Natl. Acad. Sci. USA 93: 780–784.

    Article  CAS  Google Scholar 

  22. van Holde, K. and Zlatanova, J. 1994. Unusual DNA structures, chromatin, and transcription. BioEssays 16: 59–67.

    Article  CAS  Google Scholar 

  23. Benham, C.J. 1996. Duplex destabilization in superhelical DNA is predicted to occur at specific transcriptional regulatory regions. J. Mol. Biol. 255: 425–434.

    Article  CAS  Google Scholar 

  24. Schrothe, G.P. and Ho, P.S. 1995. Occurrence of potential cruciform and H-DNA forming sequences in genomic DNA. Nucl. Acids. Res. 23: 1977–1983.

    Article  Google Scholar 

  25. Giardina, C., Perez-Riba, M. and Lis, J.T. 1992. Promoter melting and TFIID complexes on Drosophila genes in vivo. Genes & Dev. 6: 2190–2200.

    Article  CAS  Google Scholar 

  26. Marilley, M. and Pasero, P. 1996. Common DNA structural features exhibited by eukaryotic ribosomal gene promoters. Nucl. Acids. Res. 24: 2204–2211.

    Article  CAS  Google Scholar 

  27. Potaman, V.N., Ussery, D.W. and Sinden, R.R. 1996. Formation of a combined H-DNA/Open TATA box structure in the promoter sequence of the human Na, K-ATPase α2 gene. J. Biol. Chem. 271: 13441–13447.

    Article  CAS  Google Scholar 

  28. Diller, J.D. and Raghuraman, M.K. 1994. Eukaryotic replication origins: control in space and time. Trends Biol. Sci. 19: 320–325.

    Article  CAS  Google Scholar 

  29. Lin, S. and Kowalski, D. 1994. DNA helical instability facilitates initiation at the SV40 replication origin. J. Mol. Biol. 235: 496–507.

    Article  CAS  Google Scholar 

  30. Norton, J.C., Waggenspack, J.H., Varnum, E. and Corey, D.R. 1995. Targeting peptide nucleic acid-protein conjugates to structural features within duplex DNA. Bioorganic and Medicinal Chemistry 3: 437–445.

    Article  CAS  Google Scholar 

  31. Yanisch-Perron, C., Viera, J. and Messing, J. 1985. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 11: 103–119.

    Article  Google Scholar 

  32. Murchie, A.I.H. and Lilley, D.M. 1992. Supercoiled DNA and cruciform structures. Methods Enzymol. 211: 158–181.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smulevitch, S., Simmons, C., Norton, J. et al. Enhancement of strand invasion by oligonucleotides through manipulation of backbone charge. Nat Biotechnol 14, 1700–1704 (1996). https://doi.org/10.1038/nbt1296-1700

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1296-1700

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing