Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Electrical Control of Shoot Regeneration in Plant Tissue Cultures

Abstract

Minute electric currents of the order of 1–2 microamps stimulate shoot differentiation up to 5-fold in tobacco callus cultures. The location of the first-formed shoots depends on the direction of the current. Similar stimulations of both root and shoot formation have been observed in wheat. It is suggested that the effect is due to the artificial currents controlling the natural electric currents which flow through plant cells. The role of these currents in regulating eukaryotic differentiation is discussed. Possible applications include the rapid regeneration of plantlets from somaclonal variants and genetically engineered protoplast cultures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lund, E.J. 1923. Electrical control of organic polarity in the egg of Fucus. Bot. Gaz. 76: 288–301.

    Article  Google Scholar 

  2. Jaffe, L.F. 1966. Electrical currents through the developing Fucus egg. Proc. Natl. Acad. Sci. U.S.A. 56: 1102–1109.

    Article  CAS  Google Scholar 

  3. Robinson, K.R. and Jaffe, L.F. 1975. Polarizing Fucoid eggs drive a calcium current through themselves. Science 187: 70–72.

    Article  CAS  Google Scholar 

  4. Peng, H.B. and Jaffe, L.F. 1976. Polarization of Fucoid eggs by steady electrical fields. Develop. Biol. 53: 277–284.

    Article  CAS  Google Scholar 

  5. Weisenseel, M.H. and Jaffe, L.F. 1976. The major growth current through Lily pollen tubes enters as K+ and leaves as H+. Planta 133: 1–7.

    Article  CAS  Google Scholar 

  6. Novak, B. and Bentrup, F.W. 1972. An electrophysiological study of regeneration in Acetabularia mediterranea. Planta 108: 227–244.

    Article  CAS  Google Scholar 

  7. Chen, T.-H. and Jaffe, L.F. 1979. Forced calcium entry and polarized growth of Funaria spores. Planta 144: 401–406.

    Article  CAS  Google Scholar 

  8. Jaffe, L.F. and Nuccitelli, R. 1977. Electrical controls of development. Ann. Rev. Biophys. Bioeng. 6: 445–476.

    Article  CAS  Google Scholar 

  9. Rathore, K.S. and Goldsworthy, A. 1985. Electrical control of growth in plant tissue cultures. Bio/Technology 3: 253–254.

    Google Scholar 

  10. Goldsworthy, A. and Rathore, K.S. The electrical control of growth in plant tissue cultures: the polar transport of auxin. J. Exp. Bot. In press.

  11. Jaffe, L.F. 1977. Electrophoresis along cell membranes. Nature 265: 600–602.

    Article  CAS  Google Scholar 

  12. Poo, M.-m. and Robinson, K.R. 1977. Electrophoresis of concanavalin A receptors along muscle cell membranes. Nature 265: 602–605.

    Article  CAS  Google Scholar 

  13. Woodruff, R.I. and Telfer, W.H. 1980. Electrophoresis of proteins in intercellular bridges. Nature 286: 84–86.

    Article  CAS  Google Scholar 

  14. Jaffe, L.F., Robinson, K.R. and Nuccitelli, R. 1974. Local cation entry and self-electrophoresis as an intracellular localization mechanism. Ann. N.Y. Acad. Sci. 238: 372–389.

    Article  CAS  Google Scholar 

  15. Robinson, K.R. and Jaffe, L.F. 1977. Transcellular ion movement and growth localization in Fucoid eggs and other cells, p. 15–29. In: Water Relations in Membrane Transport in Plants and Animals. Jungreis, A. M., Hodges, T. K., Kleinzeller, A. and Schultz, S. G. (eds.). Academic Press, New York.

    Chapter  Google Scholar 

  16. Nuccitelli, R. 1984. The involvement of transcellular ion currents and electrical fields in pattern formation, p. 23–46. In: Pattern Formation—A primer in Developmental Biology, Malacinski, G. M. and Bryant, S. V. (eds). Macmillan Publishing Company, London.

    Google Scholar 

  17. Newman, I.A. 1963. Electric potentials and auxin translocation in Avena. Aust. J. Biol. Sci. 16: 629–646.

    Article  CAS  Google Scholar 

  18. Weisenseel, M.H., Dorn, A. and Jaffe, L.F. 1979. Natural H+ currents traverse growing roots and root hairs of barley (Hordeum vulgare L.) Plant Physiol. 64: 512–518.

    Article  CAS  Google Scholar 

  19. Lund, E.J. 1947. Bioelectric Fields and Growth. The University of Texas Press, Austin.

    Book  Google Scholar 

  20. Brawley, S.H., Wetherell, D.F. and Robinson, K.R. 1984. Electrical polarity in embryos of wild carrot precedes cotyledon differentiation. Proc. Natl. Acad. Sci. U.S.A. 81: 6064–6067.

    Article  CAS  Google Scholar 

  21. Trewavas, A. 1982. Possible control points in plant development, p. 7–27. In: The Molecular Biology of Plant Development, Smith, H. and Grierson, D. (eds). Blackwell Scientific Publications, Oxford.

    Google Scholar 

  22. Raven, J.A. 1979. The possible role of membrane electrophoresis in the polar transport of IAA and other solutes in plant tissues. New Phytol 78: 285–291.

    Article  Google Scholar 

  23. Gamborg, O.L., Miller, R.A. and Ojima, K. 1968. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50: 151–158.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rathore, K., Goldsworthy, A. Electrical Control of Shoot Regeneration in Plant Tissue Cultures. Nat Biotechnol 3, 1107–1109 (1985). https://doi.org/10.1038/nbt1285-1107

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1285-1107

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing