Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Protoplasts from Root Hairs of Crop Plants

Abstract

It has been found possible to achieve rapid enzymatic degradation of the cell wall of the apices of root hairs from a wide range of crop species. Thereby it is possible to expose plasma membranes with partial protoplast release whilst maintaining the functional integrity of the plant. This exposure of plasma membranes provides a port of entry into the plant for a wide range of investigations including genetic manipulations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cocking, E.C. 1984. The use of protoplasts: potentials and progress, p. 415–425. In: Gene Manipulation in Plant Improvement. 16th Sladler Genetics Symposium. J. P. Gustafson (ed). Plenum Press, New York and London.

    Chapter  Google Scholar 

  2. Davey, M.R. and Kumar, A. 1983. Higher plant protoplasts—retrospect and prospect. Int. Rev. Cytology (Suppl. 16):219–299.

    CAS  Google Scholar 

  3. Brisson, N., Paszkowski, J., Penswick, J.R., Gronenborn, B., Potrykus, I. and Hohn, T. 1984. Expression of a bacterial gene in plants by using a viral vector. Nature 310: 511–514.

    Article  CAS  Google Scholar 

  4. Steinbiss, N.-H. and Stabel, P. 1983. Protoplast derived tobacco cells can survive capillary microinjection of the fluorescent dye Lucifer Yellow. Protoplasma 116: 223–227.

    Article  Google Scholar 

  5. Tsukakoshi, M., Kurata, S., Nomiya, Y., Ikawa, Y. and Kasuya, T. 1984. A novel method of DNA transfection by laser microbeam cell surgery. Appl. Phys. B. 35: 1–6.

    Article  Google Scholar 

  6. Cormack, R.G.H. 1949. The development of root hairs in Angiosperms. Botanical Review XV: 583–612.

    Article  Google Scholar 

  7. Callaham, D.A. and Torrey, J.G. 1981. The structural basis for infection of root hairs of Trifolium repens by Rhizobium. Can. J. Bot. 59: 1647–1664.

    Article  Google Scholar 

  8. Hornberg, C. and Weiler, E.W. 1984. High-affinity binding sites for abscisic acid on the plasmalemma of Vicia faba guard cells. Nature 310: 321–324.

    Article  CAS  Google Scholar 

  9. Schroeder, J.I., Hedrich, R. and Fernandez, J.M. 1984. Potassium-selective single channels in guard cell protoplasts of Vicia faba. Nature 312: 361–362.

    Article  CAS  Google Scholar 

  10. Morgan, N., Ehrenstein, G., Iwasa, K., Bare, C. and Mischke, C. 1984. Ion channels in plasmalemma of wheat protoplasts. Science 226: 835–838.

    Article  Google Scholar 

  11. Cocking, E.C. 1960. A method for the isolation of protoplasts and vacuoles. Nature 187: 927–929.

    Article  Google Scholar 

  12. Senn, A. and Pilet, P.E. 1980. Isolation and some morphological properties of maize root protoplasts. Z. Pflanzenphysiol. 100: 299–310.

    Article  CAS  Google Scholar 

  13. Lloyd, C.W. 1983. Helical microtubular arrays in onion root hairs. Nature 305: 311–313.

    Article  CAS  Google Scholar 

  14. Belford, D.S. and Preston, R.D. 1961. The structure and growth of root hairs. J. Exptl. Bot. 12: 157–168.

    Article  CAS  Google Scholar 

  15. Cooper, K.M. 1982. Callose-deposit formation in radish root hairs, p. 167–184. In: Cellulose and Other Natural Polymer Systems. R. Malcolm Brown Jr (ed.). Plenum Press, 167–184.

    Chapter  Google Scholar 

  16. Bhuvaneswari, T.V., Turgeon, B.G. and Bauer, W.D. 1980. Early events in the infection of soybean (Glycine max L. Merr.) by Rhizobium japonicum. 1. Localization of infectable root cells. Plant Physiol. 66: 1027–1031.

    Article  CAS  Google Scholar 

  17. Davey, M.R. and Cocking, E.C. 1972. Uptake of Rhizobium by isolated plant protoplasts. Nature 239: 455–456.

    Article  Google Scholar 

  18. Davey, M.R. and Power, J.B. 1975. Uptake of microorganisms by plant protoplasts. Plant Sci. Lett. 5: 269–274.

    Article  Google Scholar 

  19. Hamlyn, P.F., Bradshaw, R.E., Mellon, F.M., Santiago, C.M., Wilson, J.M. and Peberdy, J.F. 1981. Efficient protoplast isolation from fungi using commercial enzymes. Enzyme Microb. Technol. 3: 321–325.

    Article  CAS  Google Scholar 

  20. Itoh, T., O'Neil, R.M. and Brown, R.M. 1984. Interference of cell wall regeneration of Boergesenia forbesii protoplasts by Tinopal LPW. a fluorescent brightening agent. Protoplasma, 123: 174–183.

    Article  CAS  Google Scholar 

  21. Jones, L.E., Hildebrandt, A.C., Riker, A.J. and Wu, J.H. 1960. Growth of somatic tobacco cells in microculture. Amer. J. Bot. 47: 468–475.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cocking, E. Protoplasts from Root Hairs of Crop Plants. Nat Biotechnol 3, 1104–1106 (1985). https://doi.org/10.1038/nbt1285-1104

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1285-1104

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing