Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Seminal vesicle production and secretion of growth hormone into seminal fluid

Abstract

Production of foreign proteins in the tissues of transgenic animals represents an efficient and economical method of producing therapeutic and pharmaceutical proteins. In this study, we demonstrate that the mouse P12 gene promoter specific to the male accessory sex gland can be used to generate transgenic mice that express human growth hormone (hGH) in their seminal vesicle epithelium. The hGH is secreted into the ejaculated seminal fluids with the seminal vesicle lumen contents containing concentrations of up to 0.5 mg/ml. As semen is a body fluid that can be collected easily on a continuous basis, the production of transgenic animals expressing pharmaceutical proteins into their seminal fluid could prove to be a viable alternative to use of the mammary gland as a bioreactor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: (A) Northern blot analysis of RNA extracted from various tissues of nontransgenic (-) and transgenic (+) male mice from the P12-hGH 2097 line.
Figure 2: (A) Northern blot analysis of RNA extracted from the seminal vesicles (S.V.) and kidneys (Kid) of male mice from the two P12-hGH transgenic lines (1, line 1027; 2, line 2097) and a nontransgenic male (N).
Figure 3: Immunohistochemical staining patterns of hGH on sections of the seminal vesicle and kidney of transgenic male mice.
Figure 4: Time course of hGH concentration in the vaginal plug extracts and serum from P12-hGH 1027 male transgenic mice.

Similar content being viewed by others

References

  1. Jänne, J. et al. Transgenic bioreactors. Int. J. Biochem. 26, 859–870. (1994).

    Article  Google Scholar 

  2. Eyestone, W.H. in Transgenic animals in agriculture (eds Murray, J.D., Anderson, G.B., Oberbauer, A.M. & McGloughlin, M.M.) 177–191 (University Press, New York; 1999).

    Google Scholar 

  3. Rosen, J.M., Li, S., Raught, B. & Hadsell, D. The mammary gland as a bioreactor: factors regulating the efficient expression of milk protein-based transgenes. Am. J. Clin. Nutr. 63, S627–S632 (1996).

    Article  Google Scholar 

  4. Houdebine, L.M. The production of pharmaceutical proteins from the milk of transgenic animals. Reprod. Nutr. Dev. 35, 609–617 (1995).

    Article  CAS  Google Scholar 

  5. Wall, R.J., Kerr, D.E. & Bondioli, K.R. Transgenic dairy cattle: genetic engineering on a large scale. J. Dairy Sci. 80, 2213–2224 (1997).

    Article  CAS  Google Scholar 

  6. Swanson, M.E. et al. Production of functional hemoglobin in transgenic swine. Bio/Technology 10, 557–559 (1992).

    CAS  PubMed  Google Scholar 

  7. Kerr, D.E., et al. The bladder as a bioreactor: urethelium production and secretion of growth hormone into urine. Nat. Biotechnol. 16, 75–79 (1998).

    Article  CAS  Google Scholar 

  8. Anderson, L.L. in Reproduction in farm animals (ed. Hafez, E.S.E) 343–360 (Lea & Febiger, Philadelphia; 1993).

    Google Scholar 

  9. Setchell, B.P. & Brooks, D.E. in The physiology of reproduction (eds Knobil, E. & Neil, J) 753–836 (Raven Press Ltd, New York; 1988).

    Google Scholar 

  10. Fink, E. & Fritz, H. Proteinase Inhibitors from Guinea Pig Seminal Vesicles. Methods Enzymol. Vol. 45: 825–833 (1976).

    Article  CAS  Google Scholar 

  11. Meloun, B., Cechovà, D. & Jonàkovà, V. Homologies in the structure of bull seminal plasma acrosin inhibitor and comparison with other homologous protease inhibitors of kazal type. Hoppe-Seyler's Z. Physiol. Chem. Vol. 364: 1665–1670 (1983).

    Article  CAS  Google Scholar 

  12. Fritz, H., Tschesche, H. & Fink, E. Protease Inhibitators from Boar Seminal Plasma. Methods Enzymol. Vol 45: 834–847 (1976).

    Article  CAS  Google Scholar 

  13. Tschesche, H., Wittig, B., Decker, G., Müller-Esterl, W. & Fritz, H.A. New acrosin inhibitor from boar spermatozoa. Eur. J. Biochem. 126, 99–104 (1982).

    Article  CAS  Google Scholar 

  14. Huhtala, M.L. Demonstration of a new acrosin inhibitor in human seminal plasma. Hoppe-Seyler's Z. Physiol. Chem. 365, 819–825 (1984).

    Article  CAS  Google Scholar 

  15. Cechovà, D. & Jonakovà, V. Bul Seminal Plasma Protease inhibitors. Methods Enzymology Vol. 80: 729–803 (1981).

    Google Scholar 

  16. Chen, L.Y., Lin, Y.H., Lai, M.L. & Chen, Y.H. Developmental profile of a caltrin-like protease inhibitor, P12, in the mouse seminal vesicle and characterization of its binding sites on the sperm surface. Biol. Reprod. 59, 1498–1505 (1998).

    Article  CAS  Google Scholar 

  17. Mills, J.S., Needham, M. & Parker, M.G. Androgen regulated expression of a spermine binding protein in the mouse ventral prostate. Nucleic Acids Res. 15, 7709–7724 (1987).

    Article  CAS  Google Scholar 

  18. Guérin, S.L., Pothier, F., Robidoux, S., Gosselin, P. & Parker, M.G. Identification of a DNA-binding site for the transcription factor GC-2 in the promoter region of the p12 gene and repression of its positive activity by upstream negative regulatory elements. J. Biol. Chem. 265, 22035–22043 (1990).

    PubMed  Google Scholar 

  19. Needham, M., Mills, J.S. & Parker, G.P. Organization and upstream DNA sequence of the mouse protease inhibitor gene. Nucleic Acids Res. 16, 6229 (1988).

    Article  CAS  Google Scholar 

  20. Brem, G et al. Multiple consequences of human growth hormone expression in transgenic mice. Mol. Biol. Med. 6, 531–547 (1989).

    CAS  PubMed  Google Scholar 

  21. Pursel, V.G. et al. Expression and performance in transgenic pigs. J. Reprod. Fertil. 40, 235–245 (1990).

    CAS  Google Scholar 

  22. Mills, J.S., Needham, M. & Parker, M.G. A secretory protease inhibitor requires androgens for its expression in male sex accessory tissues but is expressed constitutively in pancreas. EMBO J. 6, 3711–3717 (1987).

    Article  CAS  Google Scholar 

  23. Cecim, M., Kerr, J. & Bartke, A. Effects of bovine growth hormone (bGH) transgene expression or bGH treatment on reproductive functions in the female mouse. Biol. Reprod. 52, 1144–1148 (1995).

    Article  CAS  Google Scholar 

  24. Greenberg, N.M. et al. The rat probasin gene promoter directs hormonally and developmentally regulated expression of a heterologous gene specifically to the prostate in transgenic mice. Mol. Endocrinol. 8, 230–239 (1994).

    CAS  PubMed  Google Scholar 

  25. Cerdàn, M.C. et al. Accurate spatial and temporal transgene expression driven by a 3.8-kilobase promoter of the bovine B-casein gene in the lactating mouse mammary gland. Mol. Reprod. Dev. 49, 236–245 (1998).

    Article  Google Scholar 

  26. Anonymous. Québec, "La Belle Province" for artificial insemination (Spermnotes, Minitube of America. III, no. 1, pp. 1–2 (Spring 1999).

  27. Wilkins, T.D. & Velander, W. Isolation of recombinant proteins from milk. J. Cell. Biochem. 49, 333–338 (1992).

    Article  CAS  Google Scholar 

  28. Moos, J., Veselsky, L., Peknicova, J. & Drahorad, J. Purification and partial characterization of the 17 kDa sperm coating protein from boar seminal plasma. Mol. Reprod. Dev. 33, 165–171 (1992).

    Article  CAS  Google Scholar 

  29. Parry, R.V., Barker, P.J. & Jones, R. Characterization of low Mr zona pellucida binding proteins from boar spermatozoa and seminal plasma. Mol. Reprod. Dev. 33, 108–115 (1992).

    Article  CAS  Google Scholar 

  30. Sanz, L., Calvete, J.J., Karlheinz, M., Gabuis, H.J. & Topper-Peterson, E. Isolation and biochemical characterization of heparin-binding proteins from boar seminal plasma: a dual role for spermadhesins in fertilization. Mol. Reprod. Dev. 35, 37–43 (1993).

    Article  CAS  Google Scholar 

  31. Calvete, J.J. et al. Isolation and characterization of heparin- and phosphoryl-binding proteins of boar and stallion seminal plasma. Primary structure of porcine pB1. FEBS Lett. 407, 201–206 (1997).

    Article  CAS  Google Scholar 

  32. Evangelista, D.J. & Suttnar, J. Separation used for purification of recombinant proteins. J. Chromatogr. B. Biomed. Sci. Appl. 699, 383–401 (1997).

    Article  Google Scholar 

  33. Hogan, B., Beddington, R., Constantini, F. & Lacy, E. Manipulating the mouse embryo: a laboratory manual (Cold Spring Harbor Laboratories, Cold Spring Harbor, NY; 1994).

    Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the Société Innovatech, Québec et Chaudière Appalaches, Québec, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Pothier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dyck, M., Gagné, D., Ouellet, M. et al. Seminal vesicle production and secretion of growth hormone into seminal fluid. Nat Biotechnol 17, 1087–1090 (1999). https://doi.org/10.1038/15067

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/15067

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing