Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Regulated Secretion of Prolactin by the Mouse Insulinoma Cell Line βTC-3

Abstract

Our aim is to use cultured cells capable of regulated protein secretion for the production of recombi-nant proteins that require particular types of post-translational modifications. Here we have generated a stable transfected βTC-3 cell line, βTC-IPR9, that secretes high levels of recombinant prolactin. Transfected cells synthesize both the 27 kDa glycosylated and a 23 kDa nonglycosylated prolactin; the 23 kDa nonglycosylated species was secreted preferentially when cells were placed in secretion medium containing isobutylmethylxanthine (IBMX) and high concentrations of glucose, K+, and Ca2+. When the cells were cultured in medium containing low concentrations of glucose, K+, and Ca2+, most of the prolactin and insulin were not secreted; much of the prolactin was proteolytically converted to a 16 kDa form. Within the first 30 minutes after transferring the cells to medium containing secretagogues there was a 20-fold increase in the rate of secretion of prolactin; all of the 16 kDa species was secreted. The recombinant cells could be cycled several times between medium in which prolactin was biosynthesized and medium in which it was secreted. Preferential secretion of proteolytically processed prolactin in a medium without contaminating proteins offers an example of the advantage of this technology for production of other recombinant proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gething, M.-J. and Sambrook, J. 1992. Protein folding in the cell. Nature 355: 33–45.

    Article  CAS  Google Scholar 

  2. Elbein, A.D. 1991. The role of N-linked oligosaccharides in glycoprotein function. T1BTECH 9: 346–352.

    Article  Google Scholar 

  3. Lodish, H., Kong, N. and Wikstrom, L. 1992. Calcium is required for folding of newly made subunits of the asialoglycoprotein receptor within the endoplasmic reticulum. J. Biol. Chem. 267: 12753–12760.

    CAS  PubMed  Google Scholar 

  4. Hwang, C., Sinskey, A. and Lodish, H. 1992. The oxidized redox potential in the endoplasmic reticulum: Glutathione as the principal redox buffer. Science 257: 1496–1502.

    Article  CAS  Google Scholar 

  5. Braakman, I., Helenius, J. and Helenius, A. 1992. Manipulating disulfide bond formation and protein folding in the endoplasmic reticulum. EMBO 11: 1717–1722.

    Article  CAS  Google Scholar 

  6. Hutton, J.C. 1990. Subtilisin-like proteinases involved in the activation of proproteins of the eukaryotic secretory pathway. Curr. Opin. Cell. Biol. 2: 1131–1142.

    Article  CAS  Google Scholar 

  7. Darby, N.J. and Smyth, D.G. 1990. Endopeptidases and prohormone processing. Bioscience Reports 10: 1–13.

    Article  CAS  Google Scholar 

  8. Barr, P.J. 1991. Mammalian subtilisins: The long-sought dibasic processing endoproteases. Cell 66: 1–3.

    Article  CAS  Google Scholar 

  9. Davison, H.W., Rhodes, C.J. and Hutton, J.C. 1988. Intraorganellar calcium and pH control proinsulin cleavage in the pancreatic β cell via two distinct site-specific endopeptidases. Nature 333: 93–96.

    Article  Google Scholar 

  10. Sambanis, A., Stephanopoulos, G., Sinskey, A.J. and Lodish, H.F. 1990. Use of regulated secretion in protein production from animal cells: an evaluation with the AfT-20 model cell line. Biotech. Bioeng. 35: 771–780.

    Article  CAS  Google Scholar 

  11. Sambanis, A., Stephanopoulos, G. and Lodish, H.F. 1990. Multiple episodes of induced secretion of human growth hormone from recombinant AtT-20 cells. Cytotechnology 4: 111–119.

    Article  CAS  Google Scholar 

  12. Grampp, G.E. 1992. Controlled protein secretion in animal cell culture. Ph.D thesis, Massachusetts Institute of Technology, Cambridge, MA.

    Google Scholar 

  13. Smeekens, S.P., Albiges-Rizo, C., Carroll, R., Martin, S., Ohagi, S., Phillips, L.A., Benig, M., Gardner, P., Montag, A.G., Swift, H.H., Thomas, G. and Steiner, D.F. 1992. Proinsulin processing by the subtilisin-reiated proprotein convertases furin, PC2 and PC3. Proc. Natl. Acad. Sci. USA 89: 8822–8826.

    Article  CAS  Google Scholar 

  14. Smeekens, S.P. 1993. Processing of protein precursors by a novel family of subtilisin-reiated mammalian endoproteases. Bio/Technology 11: 182–186.

    CAS  Google Scholar 

  15. Efrat, S., Linde, L., Kofod, H., Spector, D., Delannoy, M., Grant, S., Hanahan, D. and Baekkeskov, S. 1988. Beta-cell lines derived from transgenic mice expressing a hybrid insulin gene-oncogene. Proc. Natl. Acad. Sci. USA 85: 9037–9041.

    Article  CAS  Google Scholar 

  16. D'ambra, R., Surana, M., Efrat, S., Starr, R.G. and Fleischer, N. 1990. Regulation of insulin secretion from β-cell lines derived from transgenic mice insulinomas resembles that of normal β-cells. Endocrinology 126: 2815–2822.

    Article  CAS  Google Scholar 

  17. Efrat, S., Leiser, M., Surana, M., Tal, M., Fusco-Demane, D. and Fleischer, N. 1993. Murine insulinoma cell line with normal glucose-regulated insulin secretion. Diabetes 42: 901–907.

    Article  CAS  Google Scholar 

  18. Cooke, N.E. 1989. Prolactin: normal synthesis, regulation and actions, p. 384–407. In: Endocrinology. DeGroot, L. J. (Ed.). WB Saunders, Philadelphia.

    Google Scholar 

  19. Smith, C.R. and Norman, M.R. 1990. Prolactin and growth hormone: molecular heterogeneity and measurement in serum. Ann Clin, Biochem 27: 542–550.

    Article  CAS  Google Scholar 

  20. Lewis, U.J., Singh, R.N.P., Lewis, L.J., Seavey, B. and Sinha, Y.N. 1984. Glycosylated ovine prolactin. Proc. Natl. Acad. Sci. USA 81: 385–389.

    Article  CAS  Google Scholar 

  21. Cole, E.S., Nichols, E.H., Lauziere, K., Edmunds, T. and McPherson, J.M. 1991. Characterization of the microheterogeneity of recombinant primate prolactin: Implications for posttranslational modifications of the hormone in vivo. Endocrinology 129: 2639–2646.

    Article  CAS  Google Scholar 

  22. Lewis, U.J., Singh, R.N.P., Sinha, Y.N. and Vanderlaan, W.P. 1985. Glycosylated human prolactin. Endocrinology 116: 359–363.

    Article  CAS  Google Scholar 

  23. Mittra, I. 1980. A novel “cleaved prolactin” in the rat pituitary. I. Biosynthesis, characterization and regulatory control. Biochem. Biophys. Res. Commun. 95: 1750–1759.

    Article  CAS  Google Scholar 

  24. Mittra, I. 1980. A novel “cleaved prolactin” in the rat pituitary. II. In vivo mammary mitogenic activity of its N-terminal 16K moiety. Biochem Biophys Res Commun 95: 1760–1767.

    Article  CAS  Google Scholar 

  25. Pellegrini, I., Gunz, G., Grisoli, F. and Jaquet, P. 1990. Different pathways of secretion for glycosylated and nonglycosylated human prolactin. Endocrinology 126: 1087–1095.

    Article  CAS  Google Scholar 

  26. Jain, K., Zucker, P.F., Chan, A.M. and Archer, M.C. 1985. Monolayer culture of pancreatic islets from the Syrian hamster. In Vitro 21: 1–5.

    CAS  Google Scholar 

  27. Efrat, S., Surana, M. and Fleischer, N. 1991. Glucose induces insulin transcription in a murine pancreatic β-cell line. J. Biol. Chem. 266: 11141–11143.

    CAS  PubMed  Google Scholar 

  28. Steiner, D.F., Docherty, K. and Carroll, R. 1984. Golgi/granule processing of peptide hormone and neuropeptide precursors: a minireview. J. Cell. Biochem. 24: 121–130.

    Article  CAS  Google Scholar 

  29. Steiner, D.F., Michael, J., Houghten, R., Mathieu, M., Gardner, P.R., Ravazzola, M. and Orci, L. 1987. Use of a synthetic peptide antigen to generate antisera reactive with a proteolytic processing site in native human proinsulin: Demonstration of cleavage within clathrin-coated (pro)secretory vesicles. Proc. Natl. Acad. Sci. USA 84: 6184–6188.

    Article  CAS  Google Scholar 

  30. Smeekens, S.P. and Steiner, D.F. 1990. Identification of a human insulinoma cDNA encoding a novel mammalian protein structurally related to the yeast dibasic processing protease Kex2 J. Biol. Chem. 265: 2997–3000.

    CAS  Google Scholar 

  31. Seidah, N.G., Gaspar, L., Mion, P., Marcinkiewicz, M.M., Mbikay, M. and Chretien, M. 1990. cDNA sequence of two distinct pituitary proteins homologous to Kex 2 and furin gene products: tissue-specific mRNAs encoding candidates for pro-hormone processing proteinases. DNA Cell Biol. 9: 415–424.

    Article  CAS  Google Scholar 

  32. Smeekens, S.P., Avruch, A.S., LaMendola, J., Chan, S.J. and Steiner, D.F. 1991. Identification of a cDNA encoding a second putative prohormone convertase related to PC2 in AtT20 cells and islets of Langerhans. Proc. Natl. Acad. Sci. USA 88: 340–344.

    Article  CAS  Google Scholar 

  33. Bailyes, E.M., Shennan, K.I.J., Seal, A.J., Smeekens, S.P., Steiner, D.F., Hutton, J.C. and Docherty, K. 1992. A member of the eukaryotic subtilisin family (PC3) has the enzymic properties of the type 1 proinsulin-converting endopeptidase. Biochem. J. 285: 391–394.

    Article  CAS  Google Scholar 

  34. Moore, H.-P.H. and Kelly, R.B. 1983. Expressing a human proinsulin cDNA in a mouse ACTH-secreting cell. Intracellular storage, proteolytic processing, and secretion on stimulation. Cell 35: 531–538.

    Article  CAS  Google Scholar 

  35. Wong, V.L.Y., Compton, M.M., Witorsch, R.J. 1986. Proteolytic modification of rat prolactin by subcellular fractions of the lactating rat mammary gland. Biochim. Biophys. Acta 881: 167–174.

    Article  CAS  Google Scholar 

  36. Compton, M.M. and Witorsch, R.J. 1984. Proteolytic degradation and modification of rat prolactin by subcellular fractions of the rat ventral prostate gland. Endocrinology 115: 476–484.

    Article  CAS  Google Scholar 

  37. Nolin, J.M. 1982. Molecular homology between prolactin and ovarian peptides: Evidence for physiologic modification of the parent molecule by the target. Peptides 3: 823–831.

    Article  CAS  Google Scholar 

  38. Ferrara, N., Clapp, C. and Weiner, R. 1991. The 16K fragment of prolactin specifically inhibits basal or fibroblast growth factor stimulated growth of capillary endothelial cells. Endocrinology 129: 896–900.

    Article  CAS  Google Scholar 

  39. Felgner, P.L., Gadek, T.R., Holm, M., Roman, R., Chan, H.W., Wenz, M., Northrop, J.P., Ringold, G.M. and Danielsen, M. 1987. Lipofectin: A highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA 84: 7413–7417.

    Article  CAS  Google Scholar 

  40. Akbar, A.M., Kannan, C.R. and Burke, G. 1975. The clinical utility of a heterologous radioimmunoassay for human prolactin. Clinica Chimica Acta 61: 391–398.

    Article  CAS  Google Scholar 

  41. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  Google Scholar 

  42. Hirani, S., Bernasconi, R.J. and Rasmussen, J.R. 1987. Use of N-glycanase to release Asparagine-linked oligosaccharides for structural analysis. Anal. Biochem 162: 485–492.

    Article  CAS  Google Scholar 

  43. Plummer, T.H. Jr., Elder, J.H., Alexander, S., Phelan, A.W. and Tarentino, A.L. 1984. Demonstration of peptide: N-glycosidase F activity in endo-β-N-acetylglucosaminidase F preparations. J. Biol. Chem. 259: 10700–10704.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, K., Stephanopoulos, G., Sinskey, A. et al. Regulated Secretion of Prolactin by the Mouse Insulinoma Cell Line βTC-3. Nat Biotechnol 13, 1191–1197 (1995). https://doi.org/10.1038/nbt1195-1191

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1195-1191

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing