Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Engineered membrane superchannel improves bioremediation potential of dioxin-degrading bacteria

Abstract

Sphingomonas sp. A1 possesses specialized membrane structures termed 'superchannels' that enable the direct incorporation of macromolecules into the cell. We have engineered two related sphingomonads, the dioxin-degrading S. wittichii RW1 and the polypropylene glycol–degrading S. subarctica IFO 16058T, to incorporate this superchannel into their cell membranes. In both cases the bioremediation capability of the organisms was substantially increased pointing at the potential of this approach as a general strategy to improve bacterial degradation of hazardous compounds in the environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Properties and microscopic observation of the engineered dioxin-degrading sphingomonad Sphingomonas wittichii RW1.

Similar content being viewed by others

References

  1. Hong, H.B. et al. Appl. Environ. Microbiol. 68, 2584–2588 (2002).

    Article  CAS  Google Scholar 

  2. Wittich, R.M. Appl. Microbiol. Biotechnol. 49, 489–499 (1998).

    Article  CAS  Google Scholar 

  3. Kawahara, K., Uchida, K. & Aida, K. Biochim. Biophys. Acta 712, 571–575 (1982).

    Article  CAS  Google Scholar 

  4. Hashimoto, W. et al. Biosci. Biotechnol. Biochem. 69, 673–692 (2005).

    Article  CAS  Google Scholar 

  5. Hashimoto, W. et al. Biochemistry 44, 13783–13794 (2005).

    Article  CAS  Google Scholar 

  6. Hisano, T. et al. Biochem. Biophys. Res. Commun. 220, 979–982 (1996).

    Article  CAS  Google Scholar 

  7. Mishima, Y. et al. J. Biol. Chem. 278, 6552–6559 (2003).

    Article  CAS  Google Scholar 

  8. Momma, K. et al. J. Mol. Biol. 316, 1051–1059 (2002).

    Article  CAS  Google Scholar 

  9. Momma, K. et al. Biochemistry 44, 5053–5064 (2005).

    Article  CAS  Google Scholar 

  10. Momma, K. et al. J. Bacteriol. 182, 3998–4004 (2000).

    Article  CAS  Google Scholar 

  11. Hashimoto, W. et al. J. Bacteriol. 182, 4572–4577 (2000).

    Article  CAS  Google Scholar 

  12. Yoon, H.J. et al. Protein Expr. Purif. 19, 84–90 (2000).

    Article  CAS  Google Scholar 

  13. Wittich, R.M. et al. Appl. Environ. Microbiol. 58, 1005–1010 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kimbara, K. et al. J. Bacteriol. 171, 2740–2747 (1989).

    Article  CAS  Google Scholar 

  15. Déziel, E., Comeau, Y. & Villemur, R. Biodegradation 10, 219–233 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Grants-in-Aid from the Ministry of Education, Science, Sports and Culture of Japan (10556017, 10145229, 11132237, 11460039 and 09876026 to K. Murata). This work was also supported in part by the Program for Promotion of Basic Research Activities for Innovative Biosciences (PROBRAIN) of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kousaku Murata.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Overall picture of the super-channel (alginate import and depolymerization systems) in Sphingomonas sp. A1. (PDF 54 kb)

Supplementary Fig. 2

Properties of nonengineered S. wittichii RW1 (wild type). (PDF 50 kb)

Supplementary Fig. 3

Properties of the engineered dioxin-degrading sphingomonad S. wittichii RW1. (PDF 23 kb)

Supplementary Fig. 4

Western blot analysis of AlgQ2 (a) and AlgS (b) in RW1 (pKS13) and RW1 (pBE11). (PDF 27 kb)

Supplementary Fig. 5

Dibenzofuran uptake rates of the resting cells of RW1 (wild type) and RW1 (pBE11). (PDF 22 kb)

Supplementary Fig. 6

Removal of dibenzofuran from a soil inoculated with RW1 (wild type) and RW1 (pBE11). (PDF 50 kb)

Supplementary Fig. 7

Engineering of S. subarctica IFO 16058T by molecular transplantation of the super-channel. (PDF 83 kb)

Supplementary Methods (PDF 56 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aso, Y., Miyamoto, Y., Mine Harada, K. et al. Engineered membrane superchannel improves bioremediation potential of dioxin-degrading bacteria. Nat Biotechnol 24, 188–189 (2006). https://doi.org/10.1038/nbt1181

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1181

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing