Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

High Level Expression of a Chimeric Anti–Ganglioside GD2 Antibody: Genomic Kappa Sequences Improve Expression in COS and CHO Cells

Abstract

We report a flexible strategy for the high level expression of a recombinant human monoclonal antibody (mAb) in Chinese hamster ovary (CHO) cells, initially using COS monkey kidney cell transfections to evaluate rapidly modifications to immunoglobulin (Ig) DNA constructs. Using sequential transfections with two amplifiable markers, we generated CHO cell lines and clones that secrete 80–110 μg/106 cells/24 hours of a mousehuman chimeric IgG1κ mAb. This cellular productivity is considerably greater than most murine hybridomas and transfected myelomas. Our data also demonstrate that genomic kappa sequences can improve mAb expression in COS and CHO cells. As a paradigm, we focused our expression studies on a human chimeric form of 3F8, a murine mAb that binds to ganglioside GD2 on neuroblastoma and melanoma tumor cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Waldmann, T.A. 1991. Monoclonal antibodies in diagnosis and therapy. Science 252: 1657–1662.

    Article  CAS  PubMed  Google Scholar 

  2. Chatenoud, L., Baudrihaye, M.F., Chkoff, N., Kreis, H., Goldstein, G. and Bach, J.-F. 1986. Restriction of the human in vivo immune response against the mouse monoclonal antibody OKT3. J. Immunol. 137: 830–838.

    CAS  PubMed  Google Scholar 

  3. Khazaeli, M.B., Saleh, M.N., Wheeler, R.H., Huster, W.J., Holden, H., Carrano, R. and LoBuglio, A. 1988. Phase I trial of multiple large doses of murine monoclonal antibody CO17-1A. II. Pharmacokinetics and Immune Response. J. Natl. Cancer Inst. 80: 937–942.

    Article  CAS  PubMed  Google Scholar 

  4. Morell, A., Terry, W.D. and Waldman, T.A. 1970. Metabolic properties of IgG subclasses in man. J. of Clinical Investigation 49: 673–680.

    Article  CAS  Google Scholar 

  5. Ortaldo, R., Woodhouse, C., Morgan, A.C., Herberman, R.B., Cheresh, D.A. and Reisfeld, R. 1987. Analysis of effector cells in human antibody-dependent cellular cytotoxicity with murine monoclonal antibodies. J. Immunol. 138: 3566–3572.

    CAS  PubMed  Google Scholar 

  6. Winter, G. and Milstein, C. 1991. Man-made antibodies. Nature 349: 293–299.

    Article  CAS  PubMed  Google Scholar 

  7. Morrison, S.L. 1992. In vitro antibodies: strategies for production and application. Annu. Rev. Immunol. 10: 239–265.

    Article  CAS  PubMed  Google Scholar 

  8. Hale, G., Dyer, M.J.S., Clark, M.R., Phillips, J.M., Marcus, R., Riechmann, L., Winter, G. and Waldmann, H. 1988. Remission induction in non-hodgkin lymphoma with reshaped human monoclonal antibody CAMPATH-1H. Lancet 2: 1394–1399.

    Article  CAS  PubMed  Google Scholar 

  9. LoBuglio, A.F., Wheeler, R.H., Trang, J., Haynes, A., Rogers, K., Harvey, E.B., Sun, L., Ghrayeb, J. and Khazaeli, M.B. 1989. Mouse/human chimeric monoclonal antibody in man: kinetics and immune response. Proc. Natl. Acad. Sci. USA 86: 4220–4224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Boerner, P., Lafond, R., Lu, W., Brams, P. and Royston, I. 1991. Production of antigen-specific human monoclonal antibodies from in vitro-primed human splenocytes. J. Immunol. 147: 86–95.

    CAS  PubMed  Google Scholar 

  11. Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., McCafferty, J., Griffiths, A.D. and Winter, G. 1991. By-passing immunization, human antibodies from V-gene libraries displayed on phage. J. Mol. Biol. 222: 581–597.

    Article  CAS  PubMed  Google Scholar 

  12. Kang, A.S., Barbas, C.F., Janda, K.D., Benkovic, S.J. and Lerner, R.A. 1991. Linkage of recognition and replication functions by assembling combinatorial antibody Fab libraries along phage surfaces. Proc. Natl. Acad. Sci. USA 88: 4363–4366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bebbington, C.R., Renner, G., Thomson, S., King, D., Abrams, D. and Yarranton, G.T. 1992. High-level expression of a recombinant antibody from myeloma cells using a glutamine synthase gene as an amplifiable selectable marker. Bio/Technology 10: 169–175.

    CAS  Google Scholar 

  14. Page, M.J. and Sydenham, M.A. 1991. High level expression of the humanized monoclonal antibody CAMPATH-1H in Chinese hamster ovary cells. Bio/Technology 9: 65–68.

    Google Scholar 

  15. Wood, C.R., Dorner, A.J., Morris, G.E., Alderman, E.M., Wilson, D., O'Hara, R.M. Jr. and Kaufman, R.J. 1990. High level synthesis of immunoglobulins in Chinese hamster ovary cells. J. Immunol. 145: 3011–3016.

    CAS  PubMed  Google Scholar 

  16. Saito, M., Yu, R.K. and Cheung, N.-K.V. 1985. Ganglioside GD2 specificity of monoclonal antibodies to human neuroblastoma cell. Biochem. Biophys. Res. Commun. 127: 1–7.

    Article  CAS  PubMed  Google Scholar 

  17. Cheung, N.-K.V., Lazarus, H., Miraldi, F.D., Abramowsky, C.R., Kallick, S., Sarrinen, U.M., Spitzer, T., Strandjord, S.E., Coccia, P.F. and Berger, N.A. 1987. Ganglioside GD2 specific monoclonal antibody 3F8: a phase I study in patients with neuroblastoma and malignant melanoma. J. Clin. Oncol. 5: 1430–1440.

    Article  CAS  PubMed  Google Scholar 

  18. Cheung, N.-K.V., Lazarus, H., Miraldi, F.D., Berger, N.A., Abramowsky, C.R., Saarinen, U.M., Spitzer, T., Spitzer, T., Strandjord, S.E. and Coccia, P.F. 1992. Reassessment of patient response to monoclonal antibody 3F8. J. Clin. Oncol. 10: 671–672.

    Article  CAS  PubMed  Google Scholar 

  19. Wu, Z-L., Schwartz, E., Seeger, R. and Ladisch, S. 1986. Expression of GD2 ganglioside by untreated primary human neuroblastomas. Cancer Res. 46: 440–443.

    CAS  PubMed  Google Scholar 

  20. Berd, D., Herlyn, M., Koprowski, H. and Mastrangelo, M. 1989. Flow cytometric determination of the frequency and heterogeneity of expression of human melanoma-associated antigens. Cancer Res. 49: 6840–6844.

    CAS  PubMed  Google Scholar 

  21. Cheresh, D., Rosenberg, J., Mujoo, K., Hirschowitz, L. and Reisfeld, R. 1986. Biosynthesis and expression of the disialoganglioside GD2, a relevant target antigen on small cell lung carcinoma for monoclonal antibody-mediated cytolysis. Cancer Res. 46: 5112–5188.

    CAS  PubMed  Google Scholar 

  22. Heiner, J., Miraldi, F., Kallick, S., Makley, J., Neely, J., Smith-Mensah, W.H. and Cheung, N.-K.V. 1987. Localization of GD2-specific monoclonal antibody, 3F8 in human osteosarcoma. Cancer Res. 47: 5377–5381.

    CAS  PubMed  Google Scholar 

  23. Saarinen, U.M., Coccia, P.F., Gerson, S.L., Pelley, R. and Cheung, N.-K.V. 1985. Eradication of neuroblastoma cells in vitro by monoclonal antibody and human complement: method for purging autologous bone marrow. Cancer Res. 45: 5969–5975.

    CAS  PubMed  Google Scholar 

  24. Kushner, B.H. and Cheung, N.-K.V. 1989. GM-CSF enhances 3F8 monoclonal antibody-dependent cellular cytotoxicity against human melanoma and neuroblastoma. Blood 73: 1936–1941.

    CAS  PubMed  Google Scholar 

  25. Munn, D.H. and Cheung, N.-K.V. 1987. Interleukin-2 enhancement of monoclonal antibody-mediated cellular cytotoxicity against human melanoma. Cancer Res. 47: 6600–6605.

    CAS  PubMed  Google Scholar 

  26. Munn, D.H. and Cheung, N.-K.V. 1989. Antibody-dependent antitumor cytotoxicity by human monocytes cultured with recombinant macrophage colony-stimulating factor. J. Exp. Med. 170: 511–526.

    Article  CAS  PubMed  Google Scholar 

  27. Munn, D.H. and Cheung, N.-K.V. 1990. Phagocytosis of tumor cells by human monocytes cultured in recombinant macrophage colony-stimulating factor. J. Exp. Med. 172: 231–237.

    Article  CAS  PubMed  Google Scholar 

  28. Harlow, E. and Lane, D. 1988. Antibodies, A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  29. Kaufman, R.J. 1988. Selection and coamplification of heterologous genes in mammalian cells. Methods in Enzymol. 185: 537–566.

    Article  Google Scholar 

  30. Bruggemann, M., Williams, G.T., Bindon, C.I., Clark, M.R., Walker, M.R., Jefferis, R., Waldmann, H. and Neuberger, M.S. 1987. Comparison of the effector functions of human immunoglobulins using a matched set of chimeric antibodies. J. Exp. Med. 166: 1351–1361.

    Article  CAS  PubMed  Google Scholar 

  31. Steplewski, Z., Sun, L.K., Shearman, C.W., Ghrayeb, J., Daddona, P. and Koprowski, H. 1988. Biological activity of human-mouse IgG1, IgG2, IgG3, and IgG4 chimeric monoclonal antibodies with antitumor specificity. Proc. Natl. Acad. Sci. USA 85: 4852–4856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shaw, D., Khazeli, M.B. and LoBuglio, A.F. 1988. Mouse/human chimeric antibodies to a tumor-associated antigen: biologic activity of the four human IgG subclasses. J. Nat. Can. Inst. 80: 1553–1559.

    Article  CAS  Google Scholar 

  33. Hendershot, L., Bole, D. and Kearney, J.F. 1987. The role of immunoglobulin heavy chain binding protein in immunoglobulin transport. Immunol. Today 8: 111–114.

    Article  CAS  PubMed  Google Scholar 

  34. Fasler, S., Skvaril, F. and Lutz, H.U. 1988. Electrophoretic properties of human IgG and its subclasses on sodium dodecyl-sulfate-polyacrylamide gel electrophoresis and immunoblots. Anal. Biochem. 174: 593–600.

    Article  CAS  PubMed  Google Scholar 

  35. Riboni, L., Sonnino, S., Acquotti, D., Malesci, A., Ghidoni, R., Egge, H., Mingrino, S. and Tettamanti, G. 1986. Natural occurrence of ganglioside lactones. J. Biol. Chem. 261: 8514–8519.

    CAS  PubMed  Google Scholar 

  36. Emorine, L., Kuehl, M., Weir, L., Leder, P. and Max, E.E. 1983. A conserved sequence in the immunoglobulin Jκ-Cκ intron: possible enhancer element. Nature 304: 447–449.

    Article  CAS  PubMed  Google Scholar 

  37. Larrick, J.W. and Fry, K.E. 1991. Recombinant antibodies. Hum. Antibod. Hybridomas 2: 172–189.

    Article  CAS  Google Scholar 

  38. Neuberger, M.S. and Williams, G.T. 1988. The intron requirement for immunoglobulin gene expression is dependent upon the promoter. Nucl. Acids. Res. 16: 6713–6724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Buchman, A.R. and Berg, P. 1988. Comparison of intron-dependent and intron-independent gene expression. Mol. Cell. Biol. 8: 4395–4405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chung, S. and Perry, R.P. 1989. Importance of introns for expression of mouse ribosomal protein gene rpL32. Mol. Cell. Biol. 9: 2075–2082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ryu, W.-S. and Mertz, J.E. 1989. Simian virus 40 late transcripts lacking excisable intervening sequences are defective in both stability in the nucleus and transport to the cytoplasm. J. Virol. 63: 4386–4394.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Palmiter, R.D., Sandgren, E.P., Avarbock, M.R., Allen, D.D. and Brinster, R.L. 1991. Heterologous introns can enhance expression of transgenes in mice. Proc. Natl. Acad. Sci. USA 88: 478–482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shaw, G. and Kamen, R. 1986. A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46: 659–667.

    Article  CAS  PubMed  Google Scholar 

  44. Kozak, M. 1987. Effects of intercistronic length on the efficiency of reinitiation by eucaryotic ribosomes. Mol. Cell. Biol. 7: 3438–3445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Daar, I.O. and Maquat, L.E. 1988. Premature translation termination mediates triosephosphate isomerase mRNA degradation. Mol. Cell. Biol. 8: 802–813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Queen, C., Schneider, W.P., Selick, H.E., Payne, P.W., Landolfi, N.F., Duncan, J.F., Avdalovic, N.M., Levitt, M., Junghans, R.P. and Waldmann, T.A. 1989. A humanized antibody that binds to the interleukin 2 receptor. Proc. Natl. Acad. Sci. USA 86: 10029–10033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shearman, C.W., Pollock, D., White, G., Hehir, K., Moore, G.P., Kanzy, E.J. and Kurrle, R. 1991. Construction, expression and characterization of humanized antibodies directed against the human α/β T cell receptor. J. Immunol. 147: 4366–4373.

    CAS  PubMed  Google Scholar 

  48. Maeda, H., Matsushita, S., Eda, Y., Kimachi, K., Tokiyoshi, S. and Bendig, M.M. 1991. Construction of reshaped human antibodies with HIV-neutralizing activity. Hum. Antibod. Hybridomas 2: 124–134.

    Article  CAS  Google Scholar 

  49. Maniatis, T., Fritsch, E.F. and Sambrook, J 1982. Molecular Cloning, A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  50. Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S.J., Higuchi, R., Horn, G.T., Mullis, K.B. and Erlich, H.A. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491.

    Article  CAS  PubMed  Google Scholar 

  51. Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning, A Laboratory Manual. Second Edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  52. Hieter, P.A., Max, E.E., Seidman, J.G., Maizel, J.V. Jr. and Leder, P. 1980. Cloned human and mouse kappa immunoglobulin constant and J region genes conserve homology in functional segments. Cell 22: 197–207.

    Article  CAS  PubMed  Google Scholar 

  53. Ellison, J.W., Berson, B.J. and Hood, L.E. 1982. The nucleotide sequence of a human immunoglobulin Cγ1 gene. Nucl. Acids Res. 10: 4071–4079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lopata, M.A., Cleveland, D.W. and Sollner-Webb, B. 1984. High level transient expression of a chloramphenicol acetyl transferase gene by DEAE-dextran mediated DNA transfection coupled with a dimethyl sulfoxide or glycerol shock treatment. Nucl. Acids Res. 12: 5707–5717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Luthman, H. and Magnusson, G. 1983. High efficiency polyoma DNA transfection of chloroquine treated cells. Nucl. Acids Res. 11: 1295–1308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Felgner, P.L., Gadek, T.R., Holm, M., Roman, R., Chan, H.W., Wenz, M., Northrop, J.P., Ringold, G.M. and Danielsen, M. 1987. Lipofection: A highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA 84: 7413–7417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Max, E.E., Maizel, J.V. Jr. and Leder, P. 1981. The nucleotide sequence of a 5.5•kilobase DNA segment containing the mouse κ immunoglobulin J and C region genes. J. Biol. Chem. 256: 5116–5120.

    CAS  PubMed  Google Scholar 

  58. Dorner, A.J. and Kaufman, R.J. 1990. Analysis of synthesis, processing, and secretion of proteins expressed in mammalian cells. Methods In Enzymol. 185: 577–596.

    Article  CAS  Google Scholar 

  59. Chaplin, M.F. 1986. Monosaccharides, p.6. In: Carbohydrate Analysis: A Practical Approach. Chaplin, M. F. and Kennedy, J. F. (Eds). IRL Press, Oxford, UK.

    Google Scholar 

  60. Morrison, I.M. 1986. Glycolipids, p. 208. In: Carbohydrate Analysis: A Practical Approach. Chaplin, M. F. and Kennedy, J. F. (Eds.). IRL Press, Oxford, UK.

    Google Scholar 

  61. Ledeen, R.W. 1989. Biosynthesis, metabolism and biological effects of gangliosides, p. 45. In: Neurobioloqy of Glycoconjugates. Margolis, R. U. and Margolis, R. K. (Eds.). Plenum Press, NY.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fouser, L., Swanberg, S., Lin, BY. et al. High Level Expression of a Chimeric Anti–Ganglioside GD2 Antibody: Genomic Kappa Sequences Improve Expression in COS and CHO Cells. Nat Biotechnol 10, 1121–1127 (1992). https://doi.org/10.1038/nbt1092-1121

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1092-1121

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing