Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Neuron-restrictive silencer elements mediate neuron specificity of adenoviral gene expression

Abstract

Neuron–restrictive silencer elements (NRSEs) were used to target the gene expression of adenoviral vectors specifically to neuron cells in the central nervous system. By generating adenoviral constructs in which NRSE sequences were placed upstream from the ubiquitous phosphoglycerate kinase promoter, the specificity of expression of a luciferase reporter gene was tested in both cell lines and primary cultures. Whereas transgene expression was negligible in nonneuronal cells following infection with an adenovirus containing 12 NRSEs, neuronal cells strongly expressed luciferase when infected with the same adenovirus. The NRSEs restricted expression of the luciferase gene to neuronal cells in vivo when adenoviruses were injected both intramuscularly into mice and intracerebrally into rats. This NRSE strategy may avoid side effects resulting from the ectopic expression of therapeutic genes in the treatment of neurological diseases. In particular, it may allow the direct transfection of motor neurons without promoting transgene expression within inoculated muscles or the secretion of transgene products into the bloodstream.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transfection of adenoviral plasmids.
Figure 2: Transfection of NSE and NRSE plasmids.
Figure 3: Adenoviral infection in vitro of cell lines (A, B) and rat primary cultures (C–F).
Figure 4: Detection of luciferase-expressing neurons in the brainstem one week after adenovirus injection into the tongue.
Figure 5: Luciferase activity after adenoviral in vivo infection.
Figure 6: Double immunostaining of luciferase/NeuN neurons and luciferase/GFAP astrocytes after injection of Ad-N12PGK-luc and Ad-PGK-luc into the rat striatum (STR, A–D) and hippocampus (HPC, E–H).

Similar content being viewed by others

References

  1. Sendtner, M. Gene therapy for motor neuron disease. Nat. Med. 3, 380–381 (1997).

    Article  CAS  Google Scholar 

  2. Le Gal La Salle, G. et al. An adenovirus vector for gene transfer into neurons and glia in the brain. Science 259, 988– 990 (1993).

    Article  CAS  Google Scholar 

  3. Barkats, M. et al. Adenovirus in the brain: recent advances of gene therapy for neurodegenerative diseases. Prog. Neurobiol. 55, 333– 341 (1998).

    Article  CAS  Google Scholar 

  4. Barkats, M. et al. Intrastriatal grafts of embryonic mesencephalic rat neurons genetically modified using an adenovirus encoding human Cu/Zn superoxide dismutase. Neuroscience 78, 703–713 (1997).

    Article  CAS  Google Scholar 

  5. Horellou, P. et al. Direct intracerebral gene transfer of an adenoviral vector expressing tyrosine hydroxylase in a rat model of Parkinson's disease. Neuroreport 6, 49–53 (1994 ).

    Article  CAS  Google Scholar 

  6. Bilang-Bleuel, A. et al. Intrastriatal injection of an adenoviral vector expressing glial-cell-line-derived neurotrophic factor prevents dopaminergic neuron degeneration and behavioral impairment in a rat model of Parkinson disease. Proc. Natl. Acad. Sci. USA 94, 8818–8823 ( 1997).

    Article  CAS  Google Scholar 

  7. Haase, G. et al. Gene therapy of murine motor neuron disease using adenoviral vectors for neurotrophic factors. Nat. Med. 3, 429– 436 (1997).

    Article  CAS  Google Scholar 

  8. Ghadge, G.D. et al. CNS gene delivery by retrograde transport of recombinant replication-defective adenoviruses. Gene Ther. 2, 132– 137 (1995).

    CAS  PubMed  Google Scholar 

  9. Finiels, F. et al. Specific and efficient gene transfer strategy offers new potentialities for the treatment of motor neurone diseases. Neuroreport 6, 2473–2478 (1995).

    Article  CAS  Google Scholar 

  10. Peel, A.L., Zolotukhin, S., Schrimsher, G.W., Muzyczka, N. & Reier, P.J. Efficient transduction of green fluorescent protein in spinal cord neurons using adeno-associated virus vectors containing cell type-specific promoters. Gene Ther. 4, 16–24 (1997).

    Article  CAS  Google Scholar 

  11. Mori, N., Stein, R., Sigmund, O. & Anderson, D.J. A cell type-preferred silencer element that controls the neural-specific expression of the SCG10 gene. Neuron 4, 583– 594 (1990).

    Article  CAS  Google Scholar 

  12. Maue, R.A., Kraner, S.D., Goodman, R.H. & Mandel, G. Neuron-specific expression of the rat brain type II sodium channel gene is directed by upstream regulatory sequence. Neuron 4, 223–231 (1990).

    Article  CAS  Google Scholar 

  13. Mori, N., Schoenherr, C., Vandenbergh, D.J. & Anderson, D.J. A common silencer element in the SCG10 and type II Na+ channel genes binds a factor present in nonneuronal cells but not in neuronal cells. Neuron 9, 45–54 (1992).

    Article  CAS  Google Scholar 

  14. Schoenherr, C.J. & Anderson, D.J. The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science 267, 1360– 1363 (1995).

    Article  CAS  Google Scholar 

  15. Bessis, A., Champtiaux, N., Chatelin, L. & Changeux, J.P. The neuron-restrictive silencer element: a dual enhancer/silencer crucial for patterned expression of a nicotinic receptor gene in the brain. Proc. Natl. Acad. Sci. USA 94, 5906– 5911 (1997).

    Article  CAS  Google Scholar 

  16. Moullier, P., Marechal, V., Danos, O. & Heard, J.M. Continuous systemic secretion of a lysosomal enzyme by genetically modified mouse skin fibroblasts. Transplantation 56, 427– 432 (1993).

    Article  CAS  Google Scholar 

  17. McBurney, M.W. et al. The mouse Pgk-1 gene promoter contains an upstream activator sequence. Nucleic Acids Res. 19, 5755– 5761 (1991).

    Article  CAS  Google Scholar 

  18. Kallunki, P., Jenkinson, S., Edelman, G.M. & Jones, F.S. Silencer elements modulate the expression of the gene for the neuron-glia cell adhesion molecule, Ng-CAM. J. Biol. Chem. 270, 21291–21298 (1995).

    Article  CAS  Google Scholar 

  19. Chong, J.A. et al. REST: A mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell. 80, 949 –957 (1995).

    Article  CAS  Google Scholar 

  20. Wood, I.C., Roopra, A. & Buckley, N.J. Neural specific expression of the m4 muscarinic acetylcholine receptor gene is mediated by a RE1/NRSE-type silencing element. J. Biol. Chem. 271, 14221–14225 (1996).

    Article  CAS  Google Scholar 

  21. Li, L., Suzuki, T., Mori, N. & Greengard, P. Identification of a functional silencer element involved in neuron-specific expression of the synapsin I gene. Proc. Natl. Acad. Sci. USA 90, 1460–1464 (1993).

    Article  CAS  Google Scholar 

  22. Forss-Petter, S. et al. Transgenic mice expressing β-galactosidase in mature neurons under neuron-specific enolase promoter control. Neuron 5, 187–197 (1990).

    Article  CAS  Google Scholar 

  23. Bessereau, J.L., Stratford-Perricaudet, L.D., Piette, J., Le Poupon, C. & Changeux, J.P. In vivo and in vitro analysis of electrical activity-dependent expression of muscle acetylcholine receptor genes using adenovirus. Proc. Natl. Acad. Sci. USA 91, 1304–1308 (1994).

    Article  CAS  Google Scholar 

  24. Chen, H.H. et al. Persistence in muscle of an adenoviral vector that lack all viral genes. Proc. Natl. Acad. Sci. USA 94, 1645– 1650 (1997).

    Article  CAS  Google Scholar 

  25. Anderson, W.F. Human gene therapy. Nature 392, 25S– 30S (1998).

    Article  Google Scholar 

  26. Corti, O. et al. A single adenovirus vector mediates doxycycline-controlled expression of tyrosine hydroxylase in brain grafts of human neural progenitors. Nat. Biotechnol. 17, 349–354 ( 1999).

    Article  CAS  Google Scholar 

  27. Stratford-Perricaudet, L.D., Makeh, I., Perricaudet, M. & Briand, P. Widespread long-term gene transfer to mouse skeletal muscles and heart. J. Clin. Invest. 90, 626–630 (1992).

    Article  CAS  Google Scholar 

  28. Hawrot, E. & Patterson, P.H. Long-term culture of dissociated sympathetic neurons. Methods Enzymol. 58, 574–584 (1979).

    Article  CAS  Google Scholar 

  29. Abercrombie M. Estimation of nuclear population from microtome section. Anat. Rec. 94, 239–247 ( 1946).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Véronique Albanese, Fabienne Chatail, and Sylvie Dumas for helpful suggestions, and Sylvie Carpaille and Philippe Colin for handling the animals. S.M. was supported by Ministère de l'Education Nationale de l'Enseignement Supérieur et de la Recherche, H.K. by Institut de Formation Supérieure Biomédicale, and M.B. by the European Commission Biotechnology program. This work was supported in part by Association Française contre les Myopathies, Association Française Retinis Pigmentosa, Institut de Recherche sur la Moelle Epinière, Centre National de la Recherche Scientifique, Rhône-Poulenc Rorer, and the Conseil Régional d'Ile-de-France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Mallet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Millecamps, S., Kiefer, H., Navarro, V. et al. Neuron-restrictive silencer elements mediate neuron specificity of adenoviral gene expression. Nat Biotechnol 17, 865–869 (1999). https://doi.org/10.1038/12849

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/12849

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing