Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Review
  • Published:

Ancient DNA is thirteen years old

Abstract

The first successful recovery of ancient DNA, from quagga and human mummies inspired significant enough interest to open an entire field of research. Efforts from many research groups, often in a hunt for the oldest sequences, showed that ancient DNA was a poor substrate for the enzymes used in molecular biology; it is present in tiny amounts, hard to purify, and frequently damaged. These obstacles have been partially overcome by the use of drastic laboratory precautions and by the introduction of polymerase chain reaction and phylogenetic studies. Ancient DNA analysis now finds applications in many research domains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Abelson, R.H., 1954. Paleobiochemistry. Carnegie Inst Washington Yearb. 53: 97–101.

    Google Scholar 

  2. Armstrong, W.G., Halstead, L.B., Reed, F.B. and Wood, L. 1983. Fossil proteins in vertebrate calcified tissues. Phil. Trans. R. Soc. Lond. B. 301: 301–343.

    Article  CAS  Google Scholar 

  3. Huq, N.L., Rambaud, S.M., Teh, L.C., Davies, A.D., McCulloch, B., Trotter, M.M. et al. 1985. Immunochemical detection and characterization of osteocalcin from Moa bone. Biochem. Biophys. Res. Com. 129: 714–720.

    Article  CAS  PubMed  Google Scholar 

  4. Weiner, S., Lowenstam, H.A. and Hood, L. 1976. Characterization of 80-million-year-old mollusk shell proteins. Proc. Natl. Acad. Sci. USA 73: 2541–2545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. De Jong, E.W., Westbroek, P., Westbroek, J.F. and Bruning, J.W. 1974. Preservation of antigenic properties of macromolecules over 70 Myr. Nature 262: 63–64.

    Article  Google Scholar 

  6. Ascenzi, A., Brunori, M., Citro, G. and Zitro, R. 1985. Immunological detection of hemoglobin in bones of ancient Roman times and of Iron and Eneolithic Ages. Proc. Natl. Acad. Sci. USA 82: 7170–7172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lowenstein, J.M. 1981. Immunological reactions from fossil material. Phil. Trans. R. Soc. Lond. B. 292: 143–149.

    Article  CAS  Google Scholar 

  8. Prager, E.M., Wilson, A.C., Loweinstein, J.M. and Sarich, V.M. 1980. Mammoth albumin. Science 209: 287–289.

    Article  CAS  PubMed  Google Scholar 

  9. Ulrich, M.M.W., Perizonius, W.R.K., Spoor, C.F., Sandberg, P. and Vermeer, C. 1987. Extraction of osteocalcin from fossil bones and teeth. Biochem. Biophys. Res. Com. 149: 712–719.

    Article  CAS  PubMed  Google Scholar 

  10. Saiki, R.K., Scharf, S., Faloona, R., Mullis, K.B., Horn, G.T., Erliich, H.A. and Arnheim, N. 1985. Enzymatic amplification of β-globulin genomic sequences and restriction site analysis for diagnostic of sickle cell anemia. Science 230: 1350–1354.

    Article  CAS  PubMed  Google Scholar 

  11. Lindahl, T. 1993. Recovery of antediluvian DNA. Nature 365: 700.

    Article  CAS  PubMed  Google Scholar 

  12. Hedges, S.B. and Schweitzer, M.H., 1995. Detecting dinosaur DNA. Science 268: 1191.

    Article  CAS  PubMed  Google Scholar 

  13. Sivori, E., Nakahama, R. and Cigliano, E.M. 1968. Germination of Achira seed (Canna sp.) approximatively 550 years old. Nature 219: 1926.

    Article  Google Scholar 

  14. Lerman, J.C. and Cigliano, E.M., 1971. Carbon-14 evidence for six hundred year old Canna compactaseed. Nature 232: 568–569.

    Article  CAS  PubMed  Google Scholar 

  15. Higuchi, R., Bowman, B., Freiberger, M., Ryder, O. and Wilson, A.C. 1984. DNA sequences from a quagga, an extinct member of the horse family. Nature 312: 282–284.

    Article  CAS  PubMed  Google Scholar 

  16. Pääbo, S. 1985. Molecular cloning of ancient Egyptian mummy DNA. Nature 314: 644–645.

    Article  PubMed  Google Scholar 

  17. Rollo, R., Asci, S.A., Marota, I. and Ubaldi, M. 1994. Molecular ecology of a Neolithic meadow: the DNA of the grass remains from the archeological site of the Tyrolean Iceman. Experientia 50: 576–584.

    Article  CAS  Google Scholar 

  18. Pääbo, S., Higuchi, R.G. and Wilson, A.C. 1989. Ancient DNA and the Polymerase Chain Reaction. J. Biol. Chem. 264: 9709–9712.

    PubMed  Google Scholar 

  19. Rogan, R.K. and Salvo, J.J. 1990. Study of nucleic acids isolated from ancient remains. Yearbook Phys. Anthropol. 33: 195–214.

    Article  Google Scholar 

  20. Pääbo, S. and Wilson, A.C., 1988. Reaction reveals cloning artefacts. Nature 334: 387–388.

    Article  PubMed  Google Scholar 

  21. Herrman, B. and Hummel, S. (eds.) 1994. Ancient DNA. Springer-Verlag, New York.

  22. Golenberg, E.M., Giannasi, D.E., Clegg, M.T., Smiley, C.J., Durbin, M., Henderson, D. and Zurawski, G. 1990. Chloroplast DNA sequence from a Miocene Magnolia species. Nature 344: 656–658.

    Article  CAS  PubMed  Google Scholar 

  23. Cano, R.J., Poinar, H.N., Pieniazek, N.J., Acra, A. and Poinar, O., 1993. Amplification and sequencing of DNA from a 120-135-million-year-old weevil. Nature 363: 536–538.

    Article  CAS  PubMed  Google Scholar 

  24. DeSalle, R., Gatesy, J., Wheeler, W. and Grimaldi, D. 1992. DNA sequence from a fossil termite in Oligo-Miocene amber and their phylogenetic implications. Science 257: 1933–1936.

    Article  CAS  PubMed  Google Scholar 

  25. Sykes, B. 1997. Lights turning red on amber. Nature 386: 764–765.

    Article  CAS  PubMed  Google Scholar 

  26. Béraud-Colomb, E., Roubin, R., Martin, J., Maroc, N., Gardeisen, A., Trabucher, G. and Goossens, M. 1995. Human β-globin gene polymorphisms characterized in DNA extracted from ancient bones 12,000 years old. Am. J. Hum. Genet. 57: 1267–1274.

    PubMed  PubMed Central  Google Scholar 

  27. Poinar, H.N., Höss, M., Bada, J.L. and Pääbo, S. 1996. Amino acid racemization and the preservation of ancient DNA. Science. 272: 864–866.

    Article  CAS  PubMed  Google Scholar 

  28. Höss, M., Jaruga, P., Zastawny, T.H., Dizdaroglu, M. and Pääbo, S. 1996. DNA damage and DNA sequence retrieval from ancient tissues. Nucl, Acids Res. 24: 1304–1307.

    Article  Google Scholar 

  29. Richards, M.B., Sykes, B.C. and Hedges, R.E.M. 1995. Authenticating DNA extracted from ancient skeletal remains. Jour. Arch. Sci. 22: 291–299.

    Article  Google Scholar 

  30. Béraud-Colomb, E., Roubin, R., Martin, J., Maroc, N., Gardeisen, A., Trabuchet, G. and Goossens, M. 1997. Letter to the editor. Am. J. Hum. Genet. 60: 1002.

    PubMed Central  Google Scholar 

  31. Hardy, C., Casane, D., Vigne, J.D., Callou, C., Dennebouy, N., Mounolou, J.-C. and Monnerot, M. 1994. Ancient DNA from Bronze Age bones of European rabbit (Oryctolagus cuniculus). Experientia 50, 564–570.

    Article  CAS  PubMed  Google Scholar 

  32. Thomas, R.H., Schaffner, W., Wilson, A.C. and Pääbo, S. 1989. DNA phytogeny of the extinct marsupial wolf. Nature 340: 465–467.

    Article  CAS  PubMed  Google Scholar 

  33. Höss, M., Dilling, A., Currant, A. and Pääbo, S. 1996. Molecular phytogeny of the extinct ground sloth Mylodon darwinii. Proc. Natl. Acad. Sci. USA 93: 181–185.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Goloubinoff, R. Pääbo, S., and Wilson, A.C. 1993. Evolution of maize inferred from sequence diversity of an Adh2gene segment from archeological specimens. Proc. Natl. Acad. Sci. USA 90: 1997–2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Janczewski, D.N., Yuhki, N., Gilbert, D.A., Jefferson, G.T. and O'Brien, S.J. 1992. Molecular phylogenetic inference from saber-toothed cat fossils of Rancho La Brea. Proc. Natl. Acad. Sci. USA 89: 9769–9773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cooper, A., Rhymer, J., James, H.R., Olson, S.L., Mclntosh, C.E., Soreson, M.D. and Fleisher, R.C. 1996. Ancient DNA and islands endemics. Nature 381: 484.

    Article  CAS  PubMed  Google Scholar 

  37. Woodward, S.R., Weyand, N.J. and Bunnel, M. 1994. DNA sequence from Cretaceous period bone fragments. Science 266: 1229–1232.

    Article  CAS  PubMed  Google Scholar 

  38. Fullerton, S.M., Harding, R.M., Boyce, A.J. and Clegg, J.B. Molecular and population genetic analysis of allelic sequence diversity at the human β-globin locus. Proc. Natl. Acad. Sci. USA 89: 1805–1809. 1994.

    Google Scholar 

  39. Djoulah, A., Sanchez-Mazas, I., Khalil, S., Benhamamouch, L., Degos, L., Deschamps, I. and Hors, J. 1994. HLA-DRB1, DQA1 and DQB1 DNA polymorphisms in healthy Algerian and genetic relationships with other populations. Tissue Antigens 43: 102–109.

    Article  CAS  PubMed  Google Scholar 

  40. Stoneking, M. 1993. DNA and recent human evolution. Evolutionary Anthropology 2: 60–73.

    Article  Google Scholar 

  41. Vigilant, L., Stoneking, M., Harpending, H., Hawkes, K., Wilson, A.C. 1991. African population and the evolution of human mitochondrial DNA. Science 253: 1503–1507.

    Article  CAS  PubMed  Google Scholar 

  42. Handt, A., Richards, M., Trommsdorff, M., Kilger, C., Simanainen, J., Georgiev, O., Bauer, B. et al. 1994. Molecular genetic analysis of the Tyrolean toe Man. Science 264: 1775–1778.

    Article  CAS  PubMed  Google Scholar 

  43. Hagelberg, E. and Clegg, J.B. 1991. Isolation and characterization of DNA from archeological bone. Proc. R. Soc. Lond. B. 244: 45–50.

    Article  CAS  Google Scholar 

  44. Hänni, C., Begue, A., Laudet, V. and Stéhelin, D. 1995. Molecular typing of Neolithic human bones. Journal of Archeological Science 22: 649–658.

    Article  Google Scholar 

  45. Anderson, S., Bankier, A.T., Barrel, B.G., de Bruijn, M.H.L., Coulson, A.R., Drouin, J., Eperon, I.C., et al. 1981. Sequence and organization of the human mitochondrial genome. Nature 290: 457–465.

    Article  CAS  PubMed  Google Scholar 

  46. Hänni, C., Laudet, V., Coll, J. and Stehelin, D. 1994. An unusual mitochondrial sequence variant from an Egyptian mummy. Genomics 22: 487–486.

    Article  PubMed  Google Scholar 

  47. Krings, M., Stone, A., Schmitz, R.W., Krainitzki, H., Stoneking, M. and Pääbo, S. 1997. Neandertal DNA sequences and the origin of modern humans. Cell 90: 19–30.

    Article  CAS  PubMed  Google Scholar 

  48. Hein, J.L. 1986. Les hommes de Néandertal. pp. 201–215 in L'homme, son évolution, sa diversité. Ferembach, D., Suzanne, C., and Chamla, M.C. (eds.) PMRS, Paris.

    Google Scholar 

  49. Hänni, C., Brousseau, T., Laudet, V. and Stehelin, D. 1995. Isopropanol precipitation removes PCR inhibitors from ancient bone extracts. Nucl. Acids Res. 23: 881–882.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Goodyear, P.O., MacLaughlin-Black, S. and Mason, I.J. 1994. A reliable method for the removal of co-purifying PCR inhibitors from ancient DNA. Biotechniques 16: 232–235.

    CAS  PubMed  Google Scholar 

  51. Höss, M. and Pääbo, S., 1993. DNA extraction from Pleistocene bones by a silica-based purification method. Nucl. Acids Res. 21: 3913–3914.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lindahl, T. 1993. Instability and decay of the primary structure of DNA. Nature 362: 709–715.

    Article  CAS  PubMed  Google Scholar 

  53. Williams, K.M. and Smith, G.G. 1977. A critical evaluation of the application of amino acid racemization to geochronology and geothermy. Origins of Life 8: 91–144.

    Article  CAS  PubMed  Google Scholar 

  54. Kriausakul, N. and Mitterer, M.M. 1978. Isoleucine epimerization in peptides and proteins: kinetic factors and application to fossil proteins. Science 201: 1011–1014.

    Article  CAS  PubMed  Google Scholar 

  55. Brown, R.G., Allaby, K.A., O'Donoghue, K. and Sallares, R. 1994. DNA in wheat seeds from European archaelogical sites. Experientia 50: 571–575.

    Article  CAS  PubMed  Google Scholar 

  56. Filon, D., Faerman, M., Smith, P. and Oppenheim, A. 1995. Sequence analysis reveals a β-thalassemia mutation in the DNA of skeletal remains from the archaelogical site of Akhziv, Israel. Nature Genetics 9: 365–370.

    Article  CAS  PubMed  Google Scholar 

  57. Salo, W.L., Aufderheide, A.C., Buikstra, J. and Holcomb, T.A. 1994. Identification of Mycobacterium tuberculosis DNA in a pre-Columbian Peruvian mummy. Proc. Natl. Acad. Sci. USA 91: 2091–2094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hagelberg, E., Quevado, S., Turbon, D. and Clegg, J.B. 1994.DNA from ancient Easter islanders. Nature 369: 25–26.

    Article  CAS  PubMed  Google Scholar 

  59. Horai, S., Kondo, R., Murayama, K., Hayashi, S.H. and Nakai, N. 1991. Phylogenetic affiliation of ancient and contemporary humans inferred from mitochondrial DNA. Phil. Trans. R. Soc. Lond. B. 333: 409–417.

    Article  CAS  Google Scholar 

  60. Oota, H., Saitou, N.T., and Ueda, S . 1995. A genetic study of 2000-year-old human remains from Japan using mitochondrial DNA sequences. Am. J. Phys. Anthropol. 98: 133–145.

    Article  CAS  PubMed  Google Scholar 

  61. Hauswirth, W.W., Dickel, C.D., Rowold, D.J. and Hauswirth, M.A. 1994. Inter-and intrapopulation studies of ancient humans. Experientia 50: 585–591.

    Article  CAS  PubMed  Google Scholar 

  62. Richards, M., Côrte-Real, H., Forster, R., Macaulay, V., Wilkinson-Herbots, H., Demaine, A., Paphila, S. et al. 1996. Paleolithic and Neolithic lineages in the European mitochondrial gene pool. Am. J. Hum. Genet. 59: 185–203.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Audio, S., Béraud-Colomb, E. Ancient DNA is thirteen years old. Nat Biotechnol 15, 855–858 (1997). https://doi.org/10.1038/nbt0997-855

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0997-855

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing