Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Production of Recombinant Bovine Enterokinase Catalytic Subunit in Escherichia coli Using the Novel Secretory Fusion Partner DsbA

An Erratum to this article was published on 01 October 1995

Abstract

Enterokinase (EK) is a heterodimeric serine protease which plays a key role in initiating the proteolytic digestion cascade in the mammalian duodenum. The enzyme acts by converting trypsinogen to trypsin via a highly specific cleavage following the pentapeptide recognition sequence (Asp)4-Lys. This stringent site specificity gives EK great potential as a fusion protein cleavage reagent. Recently, a cDNA encoding the catalytic (light) chain of bovine enterokinase (EKL) was identified, characterized, and transiently expressed in mammalian COS cells. We report here the production of EKL in Escherichia coli by a novel secretory expression system that utilizes E. coli DsbA protein as an N-terminal fusion partner. The EKL cDNA was fused in-frame to the 3′-end of the coding sequence for DsbA, with the two domains of the fusion protein separated by a linker sequence encoding an enterokinase recognition site. Active, processed recombinant EKL, (rEKL) was generated from this fusion protein via an autocatalytic cleavage reaction. The enzymatic properties of the bacterially produced rEKL were indistinguishable from the previously described COS-derived enzyme. Both forms of rEKL were capable of cleaving peptides, polypeptides and trypsinogen with the same specificity exhibited by the native heterodimeric enzyme purified from bovine duodena. Interestingly, rEKL activated trypsinogen poorly relative to the native heterodimeric enzyme, but was superior in its ability to cleave artificial fusion proteins containing the (Asp)4-Lys recognition sequence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Maina, C.V., Riggs, P.D., Grandea, A.G., Slatko, E.E., Moran, L.S., Tagliamonte, J.A., McReynolds, L.A. and Guan, C. 1988. An Escherichia coli vector to express and purify foreign proteins by fusion to and separation from maltose-binding protein. Gene 74: 365–373.

    Article  CAS  Google Scholar 

  2. Smith, D.B. and Johnson, K.S. 1988. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione-S-transferase. Gene 67: 3l–40.

    Article  Google Scholar 

  3. LaVallie, E.R., DiBlasio, E.A., Kovacic, S., Grant, K.L., Schendel, P.F. and McCoy, J.M. 1993. A thioredoxin gene fusion system that circumvents inclusion body formation in the E. coli cytoplasm. Bio/Technology 11: 187–193.

    CAS  Google Scholar 

  4. Nagai, K. and Thøgersen, H.C. 1984. Generation of β-globin by sequence-specific proteolysis of a hybrid protein in Escherichia coli. Nature 309: 810–812.

    Article  CAS  Google Scholar 

  5. Chang, J.-Y. 1985. Thrombin specificity. Requirement for apolar amino acids adjacent to the thrombin cleavage site of polypeptide substrate. Eur. J. Biochem. 151: 217–224.

    Article  CAS  Google Scholar 

  6. Maroux, S., Baratti, J. and Desnuelle, R. 1971. Purification and specificity of porcine enterokinase. J. Biol. Chem. 246: 5031–5039.

    CAS  Google Scholar 

  7. Liepnieks, J.J. and Light, A. 1979. The preparation and properties of bovine enterokinase. J. Biol. Chem. 254: 1677–1683.

    CAS  Google Scholar 

  8. LaVallie, E.R., Rehemtulla, A., Racie, L.A., DiBlasio, E.A., Ferenz, C., Grant, K.L., Light, A. and McCoy, J.M. 1993. Cloning and functional expression of a cDNA encoding the catalytic subunit of bovine enterokinase. J. Biol. Chem. 268: 23311–23317.

    CAS  PubMed  Google Scholar 

  9. Kunitz, M. 1939. Formation of trypsin from crystalline trypsinogen by means of enterokinase. J. Gen. Physiol. 22: 429–446.

    Article  CAS  Google Scholar 

  10. Bricteux-Gregoire, S., Schyns, R. and Florkin, M. 1972. Phylogeny of trypsinogen activation peptides. Comp. Biochem. Physiol. 42B: 23–39.

    Google Scholar 

  11. Hopp, T.P., Prickett, K.S., Price, V.L., Libby, R.T., March, C.J., Cerretti, D.P., Urdal, D.L. and Conlon, P.J. 1988. A short polypeptide marker sequence useful for recombinant protein identification and purification. Bio/Technology. 6: 1204–1210.

    Article  CAS  Google Scholar 

  12. Bardwell, J.C., McGovern, K. and Beckwith, J. 1991. Identification of a protein required for disulfide bond formation in vivo. Cell 67: 581–589.

    Article  CAS  Google Scholar 

  13. Martin, J.L., Bardwell, J.C.A. and Kuriyan, J. 1993. Crystal structure of the DsbA protein required for disulfide bond formation in vivo. Nature 365: 464–468.

    Article  CAS  Google Scholar 

  14. Janknecht, R., de Martynoff, G., Lou, J., Hipskind, R. A., Nordheim, A. and Stunnenberg, H.G. 1991. Rapid and efficient purification of native histidine-tagged protein expressed by recombinant vaccinia virus. Proc. Natl. Acad. Sci. USA 88: 8972–8976.

    Article  CAS  Google Scholar 

  15. Light, A. and Fonseca, P. 1984. The preparation and properties of the catalytic subunit of bovine enterokinase. J. Biol. Chem. 259: 13195–13198.

    CAS  PubMed  Google Scholar 

  16. Dykes, C.W., Bookless, A.B., Coomber, B.A., Noble, S.A., Humber, D.C. and Hobden, A.N. 1988. Expression of atrial natriuretic factor as a cleavable fusion protein with chloramphenicol acetyltransferase in Escherichia coli. Eur. J. Biochem 174: 411–416.

    Article  CAS  Google Scholar 

  17. Forsberg, G., Baastrup, B., Rondahl, H., Holmgren, E., Pohl, G., Hartmanis, M. and Lake, M. 1992. An evaluation of different enzymatic cleavage methods for recombinant fusion proteins, applied on des (1-3) insulin-like growth factor I. J. Prot. Chem. 11: 201–211.

    Article  CAS  Google Scholar 

  18. Hirel, P-H., Schmitter, J.-M., Dessen, P., Fayat, G. and Blanquet, S. 1989. Extent of N-terminal methionine excision from Escherichia coli proteins is governed by the side-chain length of the penultimate amino acid. Proc. Natl. Acad. Sci. USA 86: 8247–8251.

    Article  CAS  Google Scholar 

  19. Fehlhammer, H., Bode, W. and Huber, R. 1977. Crystal structure of bovine trypsinogen at 1.8 Å resolution. J. Mol. Biol. 11: 415–438.

    Article  Google Scholar 

  20. Derman, A.I., Prinz, W.A., Belin, D. and Beckwith, J. 1993. Mutations that allow disulfide bond formation in the cytoplasm of Escherichia coli Science 262: 1744–1747.

    Article  CAS  Google Scholar 

  21. Vasquez, J.R., Evnin, L.B., Higaki, J.N. and Craik, C.S. 1989. An expression system for trypsin. J. Cell. Biochem. 39: 265–276.

    Article  CAS  Google Scholar 

  22. Corey, D.R. and Craik, C.S. 1992. An investigation into the minimum requirements for peptide hydrolysis by mutation of the catalytic triad of trypsin. J. Am. Chem. Soc. 114: 1784–1790.

    Article  CAS  Google Scholar 

  23. Rehemtulla, A., Dorner, A.J. and Kaufman, R.J. 1992. Regulation of PACE propeptide-processing activity: requirement for a post-endoplasmic reticulum compartment and autoproteolytic activation. Proc. Natl. Acad. Sci. USA 89: 8235–8239.

    Article  CAS  Google Scholar 

  24. Light, A., Savithri, H.S. and Liepnieks, J.J. 1980. Specificity of bovine enterokinase toward protein substrates. Anal. Biochem. 106: 199–206.

    Article  CAS  Google Scholar 

  25. Guan, C., Li, P., Riggs, P.D. and Inouye, H. 1988. Vectors that facilitate the expression and purification of foreign peptides in Escherichia coli by fusion to maltose-binding protein. Gene 67: 21–30.

    Article  Google Scholar 

  26. Sambrook, J., Fritsch, E.F. and Maniatis, J. 1989. Molecular Cloning, a Laboratory Manual, second edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  27. Dower, W.J., Miller, J.F. and Ragsdale, C.W. 1988. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 16: 6127–6145.

    Article  CAS  Google Scholar 

  28. Grant, D.A.W. and Hermon-Taylor, J. 1979. Hydrolysis of artificial substrates by enterokinase and trypsin and the development of a sensitive specific assay for enterokinase in serum. Biochim. Biophys. Acta. 567: 207–215.

    Article  CAS  Google Scholar 

  29. Mullis, K., Faloona, F., Scharf, S., Saiki, R., Horn, G. and Erlich, H. 1986. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor Symp. Quant. Biol. 51: 263–273.

    Article  CAS  Google Scholar 

  30. Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S.J., Higuchi, R., Horn, G.T., Mullis, K.B. and Erlich, H.A. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–494.

    Article  CAS  Google Scholar 

  31. Wilson, K. 1990. Preparation of genomic DNA from bacteria. Current Protocols in Molecular Biology (suppl. 9): 2.4.1–2.4.2.

  32. Gill, S.C. and von Hippel, P.H. 1989. Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem. 182: 319–326.

    Article  CAS  Google Scholar 

  33. Duplay, P., Bedouelle, H., Fowler, A., Zabin, I., Saurin, W. and Hofnung, M. 1984. Sequences of the malE gene and its product, the maltose-binding protein of Escherichia coli K12. J. Biol. Chem. 259: 10606–10613.

    CAS  PubMed  Google Scholar 

  34. Schagger, H. and von Jagow, G. 1987. Tricine-sodium dodecyl sulfate-poly-acrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100kDa. Anal. Biochem. 166: 368–379.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward R. LaVallie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collins-Racie, L., McColgan, J., Grant, K. et al. Production of Recombinant Bovine Enterokinase Catalytic Subunit in Escherichia coli Using the Novel Secretory Fusion Partner DsbA. Nat Biotechnol 13, 982–987 (1995). https://doi.org/10.1038/nbt0995-982

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0995-982

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing