Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Complement recruitment using bispecific diabodies

Abstract

We describe the engineering of antibody fragments produced in bacteria for recruitment of complement effector functions. From a phage display repertoire we isolated human antibody fragments directed against complement C1q, and linked these to lysozyme-specific antibody fragments, creating bispecific antibodies (diabodies). One diabody was able to recruit C1q, resulting in efficient lysis of lysozyme-coated sheep erythrocytes, and also induced rosette-formation of erythrocytes with human monocytes and phagocytosis after phorbol ester stimulation. These diabodies may have therapeutic applications requiring the activation of complement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Winter, G., Griffiths, A.D., Hawkins, R.E., and Hoogenboom, H.R. 1994. Making antibodies by phase display technology. Annu. Rev. Immunol. 12: 433–455.

    Article  CAS  Google Scholar 

  2. Duncan, A.R. and Winter, G. 1988. The binding site for C1q on lgG. Nature 332: 738–740.

    Article  CAS  Google Scholar 

  3. Duncan, A.R., Woof, J.M., Partridge, L.J., Burton, D.R., and Winter, G. 1988. Localization of the binding site for the human high-affinity Fc receptor on IgG. Nature 332: 563–564.

    Article  CAS  Google Scholar 

  4. Burton, D.R. and Woof, J.M. 1992. Human antibody effector function. Adv. Immunol. 51: 1–84.

    Article  CAS  Google Scholar 

  5. Fanger, M.W., Morganelli, P.M., and Guyre, P.M. 1992. Bispecific antibodies. Crit. Rev. Immunol. 12: 101–124.

    CAS  PubMed  Google Scholar 

  6. Fanger, M.W. and Guyre, P.M. 1991. Bispecific antibodies for targeted cellular cytotoxicity. Trends Biotech. 9: 375–380.

    Article  CAS  Google Scholar 

  7. Holliger, P., Brissinck, J., Williams, R.L., Thielemans, K., and Winter, G. 1996. Specific killing of lymphoma cells by cytotoxic T-cells mediated by a bispecific diabody. Protein Eng. 9: 299–305.

    Article  CAS  Google Scholar 

  8. Zhu, Z., Zapata, G., Shalaby, R., Snedecor, B., chen, H., and Carter, P. 1996. High level secretion of a humanized bispecific diabody from Escherichia coli. Bio/Technology 14: 192–196.

    CAS  PubMed  Google Scholar 

  9. Cooper, N.R. 1985. The classical complement pathway: activation and regulation of the first complement component. Adv. Immunol. 37: 151–216.

    Article  CAS  Google Scholar 

  10. Erdei, A. and Reid, K.B.M. 1988. The C1 q receptor. Mol. Immunol. 25: 1067–1073.

    Article  CAS  Google Scholar 

  11. Guan, E.N., Burgess, W.H., Robinson, S.L., Goodman, E.B., McTigue, K.J., and Tenner, A.J. 1991. Phagocytic cell molecules that bind the collagen-like region of C1 q. Involvement in the C1 q-mediated enhancement of phagocytosis. J. Biol. Chem. 266: 20345–20355.

    Google Scholar 

  12. Holliger, P., Prospero, T.D., and Winter, G. 1993. “Diabodies”: small bivalent and bispecific antibody fragments. Proc. Natl. Acad. Sci.USA 90: 6444–6448.

    Article  CAS  Google Scholar 

  13. Perisic, O., Webb, P.A. Holliger, P., Winter, G., and Williams, R.L. 1994. Crystal structure of a diabody, a bivalent antibody fragment. Structure 2: 1217–1226.

    Article  CAS  Google Scholar 

  14. Kontermann, R.E., Martineau, P., Cummings, C.E., Karpas, A., Alien, D., Derbyshire, E., and Winter, G. 1997. Enzyme immunoassays using bispecific diabodies. Immunotechnology. In press.

  15. Bobak, D.A., Gaither, T.G., Frank, M.M., and Tenner, A.J. 1987. Modulation of FcR function by complement subcomponent C1 q enhances the phagocytosis of IgG-opsonized targets by human monocytes and culture-derived macrophages. J. Immunol. 138: 1150–1156.

    CAS  PubMed  Google Scholar 

  16. Bobak, D.A., Washburn, R.G., and Frank, M.M. 1988. C1q enhances the phagocytosis of Cryptococcus neoformans blastospores by human monocytes. J. Immunol. 136: 1023–1026.

    Google Scholar 

  17. Brown, E.J. 1991. Complement receptors and phagocytosis. Curr. Op. Immunol. 3: 76–82.

    Article  CAS  Google Scholar 

  18. Tenner, A.J. and Cooper, N.R. 1982. Stimulation of a human polymorphonuclear leukocyte oxidative response by the C1q subunit of the first complement component. J. Immunol. 128: 2547–2552.

    CAS  PubMed  Google Scholar 

  19. Oiki, S. and Okada, Y. 1988. C1q induces chemotaxis and K+ conductance activation coupled to increased cytosolic Ca2+ in mouse fibroblasts. J. Immunol. 141: 3177–3185.

    CAS  PubMed  Google Scholar 

  20. Xia, M.Q., Tone, M., Packman, L., Hake, G., and Waldmann, H. 1991. Characterization of the Campath-1 (CDw52) antigen: biochemical analysis and cDNA cloning reveal an unusually small peptide backbone. Eur. J. Immunol. 21: 1677–1684.

    Article  CAS  Google Scholar 

  21. Holliger, P., Wing, M., Pound, J.D., Bohlen, H., and Winter, G. 1997. Retargeting serum immunoglobulin with bispecific antibodie. Nature Biotechnology 15: 632–636.

    Article  CAS  Google Scholar 

  22. Chatenoud, L., Ferran, C., Legendre, C., Thouard, I., Merite, S., Reuter, A., et al. 1990. In vivo cell activation following OKT3 administration. Systemic cytokine release and modulation by corticosteroids. Transplantation 49: 697–702.

    Google Scholar 

  23. Moreau, T., Coles, A., Wing, M., Isaacs, J., Hale, G., Waldmann, H., and Compston, A. 1996. Transient increase in symptoms associated with cytokine release in patients with multiple sclerosis. Brain 119: 225–237.

    Article  Google Scholar 

  24. Wing, M.G., Moreau, T., Greenwood, J., Smith, R.M., Hale, G., Isaacs, J., et al. 1996. Mechanism of first-dose cytokine-release syndrome by Campath-H: Involvement of CD16 (FcgRIII) and CD11 a/CD18 (LFA-1) on NK cells. J. Clin. Invest. 98: 2819–2826.

    Article  CAS  Google Scholar 

  25. Wing, M.G., Waldmann, H., Isaacs, J., Compston, D.A.S., and Hale, G. 1997. Ex-vivo whole blood cultures for predicting cytokine release syndrome: dependence on target antigen and antibody isotype. Ther. Immunol. In press.

  26. Alegre, M.L., Collins, A.M., Pulito, V.L., Brosius, R.A., Olson, W.C. Zivin, R.A., et al. 1992. Effect of a single amino acid mutation on the activating and immunosuppressive properties of a "humanized" OKT3 monoclonal antibody. J. Immunol. 148: 3461–3468.

    CAS  PubMed  Google Scholar 

  27. Alegre, M.L., Peterson, L.J. Xu, D., Sattar, H.A., Jeyarajah, D.R., Kowalkowski, K., et al. 1994. A non-activating “humanized” anti-CD3 monoclonal antibody retains immunosuppressive properties in vivo. Transplantation 57: 1537–1543.

    Article  CAS  Google Scholar 

  28. Vaughan, T.J., Williams, A.J., Pritchard, K., Osbourn, J.K., Pope, A.R., Earnshaw, J.C., et al. 1996. Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nature Biotechnology 14: 309–314.

    Article  CAS  Google Scholar 

  29. Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., McCafferty, J., Griffiths, A.D., and Winter, G. 1991. By-passing immunisation: human antibodies from V-gene libraries displayed on phage. J. Mol. Biol. 222: 581–597.

    Article  CAS  Google Scholar 

  30. McGuinness, B.T., Walter, G., FitzGerald, K., Schuler, P., Mahoney, W.,, Duncan, A.R., and Hoogenboom, H.R. 1996. Phage diabody repertoires for selection of large numbers of bispecific antibody fragments. Nature Biotechnology 14: 1149–1154.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kontermann, R., Wing, M. & Winter, G. Complement recruitment using bispecific diabodies. Nat Biotechnol 15, 629–631 (1997). https://doi.org/10.1038/nbt0797-629

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0797-629

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing