Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Protein solubility and folding monitored in vivo by structural complementation of a genetic marker protein

Abstract

Protein misfolding is the basis of a number of human diseases and presents an obstacle to the production of soluble recombinant proteins. We present a general method to assess the solubility and folding of proteins in vivo. The basis of this assay is structural complementation between the α- and ω- fragments of β-galactosidase (β-gal). Fusions of the α-fragment to the C terminus of target proteins with widely varying in vivo folding yield and/or solubility levels, including the Alzheimer's amyloid β (Aβ) peptide and a non-amyloidogenic mutant thereof, reveal an unambiguous correlation between β-gal activity and the solubility/folding of the target. Thus, structural complementation provides a means of monitoring protein solubility/misfolding in vivo, and should find utility in the screening for compounds that influence the pathological consequences of these processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An in vivo solubility assay based on structural complementation.
Figure 2: Colony color correlates with fusion protein solubility.
Figure 3: Target protein solubility.
Figure 4: Correlation of β-gal activity with fusion protein solubility and folding.
Figure 5: In vivo aggregation/insolubility of Aβ/α-fragment fusion proteins.

Similar content being viewed by others

References

  1. Houry, W.A., Frishman, D., Eckerskorn, C., Lottspelch, F. & Hartl, F.U. Identification of in vivo substrates of the chaperonin GroEL. Nature 402, 147–154 (1999).

    Article  CAS  Google Scholar 

  2. Huang, B., Eberstadt, M., Olejniczak, E.T., Meadows, R.P. & Fesik, S.W. NMR structure and mutagenesis of the Fas (APO-1/CD95) death domain. Nature 384, 638–641 (1996).

    Article  CAS  Google Scholar 

  3. King, J. & Betts, S. A green light for protein folding. Nat. Biotechnol. 17, 637–638 (1999).

    Article  CAS  Google Scholar 

  4. Brown, C.R., Hong-Brown, L.Q. & Welch, W.J. Correcting temperature-sensitive protein folding defects. J. Clin. Invest. 99, 1432–1444 (1997).

    Article  CAS  Google Scholar 

  5. Blackwell, J.R. & Horgan, R. A novel strategy for production of a highly expressed recombinant protein in an active form. FEBS Lett. 295, 10–12 (1991).

    Article  CAS  Google Scholar 

  6. Bourot,S. et al. Glycine betaine-assisted protein folding in a lysA mutant of Escherichia coli. J. Biol. Chem. 275, 1050–1056 (2000).

    Article  CAS  Google Scholar 

  7. Sugihara, J. & Baldwin, T.O. Effects of 3′ end deletions from Vibrio harveyi luxB gene on luciferase subunit folding and enzyme assembly: generation of temperature-sensitive polypeptide folding mutants. Biochemistry 27, 2872–2880 (1988).

    Article  CAS  Google Scholar 

  8. Wynn, R.M., Davie, J.R., Cox, R.P. & Chuang, D.T. Chaperonins groEL and groES promote assembly of heterotetramers (alpha 2 beta 2) of mammalian mitochondrial branched-chain alpha-keto acid decarboxylase in Escherichia coli. J. Biol. Chem. 267, 12400–12403 (1992).

    CAS  Google Scholar 

  9. Thomas, P.J., Qu, B.-H. & Pedersen, P.L. Defective protein folding as a basis of human disease. Trends Biochem. Sci. 20, 456–459 (1995).

    Article  CAS  Google Scholar 

  10. Dobson, C.M. Protein misfolding, evolution and disease. Trends Biochem. Sci. 24, 329–332 (1999).

    Article  CAS  Google Scholar 

  11. Thomas, P.J., Ko, Y.H. & Pedersen, P.L. Altered protein folding may be the molecular basis of most cases of cystic fibrosis. FEBS Lett. 312, 7–9 (1992).

    Article  CAS  Google Scholar 

  12. Rao, V.R., Cohen, G.B. & Oprian, D.D. Rhodopsin mutation G90D and a molecular mechanism for congenital night blindness. Nature 367, 639–642 (1994)

    Article  CAS  Google Scholar 

  13. Tan, S.Y. & Pepys, M.B. Amyloidosis. Histopathology 25, 403–414 (1994).

    Article  CAS  Google Scholar 

  14. Harper, J.D. & Lansbury, P.T. Jr. Models of amyloid seeding in Alzheimer's disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu. Rev. Biochem. 66, 385–407 (1997).

    Article  CAS  Google Scholar 

  15. Bruijn, S. et al. Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science 281, 1851–1853 (1998).

    Article  CAS  Google Scholar 

  16. Galvin, J.E., Uryu, K., Lee, V.M. & Trojanowski, J.Q. Axon pathology in Parkinson's disease and Lewy body dementia hippocampus contains alpha-, beta-, and gamma-synuclean. Proc. Natl. Acad. Sci. USA 96, 13450–13455 (1999).

    Article  CAS  Google Scholar 

  17. Prusiner, S.B. Prions. Proc. Natl. Acad. Sci. USA 95, 13383 (1998).

    Article  Google Scholar 

  18. Hind, C.R., Tennent, G.A., Evans, D.J. & Pepys, M.B. Demonstration of amyloid A (AA) protein and amyloid P component (AP) in deposits of systemic amyloidosis associated with renal adenocarcinoma. J. Pathol. 139, 159–166 (1983).

    Article  CAS  Google Scholar 

  19. Colon, W. & Kelly, J.W. Partial denaturation of transthyretin is sufficient for amyloid fibril formation in vitro. Biochemistry 31, 8654–8660 (1992).

    Article  CAS  Google Scholar 

  20. Martin, J.B. & Gusella, J.F. Huntington's disease: pathogenesis and management. N. Engl. J. Med. 315, 1267–1276 (1986).

    Article  CAS  Google Scholar 

  21. The Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72, 971–983 (1993).

  22. Davies, S.W. et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90, 537–548 (1997).

    Article  CAS  Google Scholar 

  23. Wells, R.D. & Warren, S.T. Genetic instabilities and hereditary neurological diseases. (Academic Press, San Diego, CA; 1998).

    Google Scholar 

  24. La Spada, A.R., Wilson, E.M., Lubahn, D.B., Harding, A.E. & Fischbeck, K.H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352, 77–79 (1991).

    Article  CAS  Google Scholar 

  25. Fischbeck, K.H., Lieberman, A., Bailey, C.K., Abel, A. & Merry, D.E. Androgen receptor mutation in Kennedy's disease. Phil. Trans. R. Soc. Lond. B 354, 1075–1078 (1999).

    Article  CAS  Google Scholar 

  26. Kawaguchi, Y. et al. CAG expansions in a novel gene for Machado–Joseph disease at chromosome 14q32.1. Nat. Genet. 8, 221–228 (1994).

    Article  CAS  Google Scholar 

  27. Richards, F.M. & Vithayatil, P.J. The preparation of subtilisin-modified ribonuclease and the separation of the peptide and protein components. J. Biol. Chem. 234, 1459–1465 (1959).

    CAS  Google Scholar 

  28. Ullmann, A., Jacob, F. & Monod, J. Characterization by in vitro complementation of a peptide corresponding to an operator-proximal segment of the β-galactosidase structural gene of Escherichia coli. J. Mol. Biol. 24, 339–343 (1967).

    Article  CAS  Google Scholar 

  29. Taniuchi, H. & Anfinsen, C.B. Simultaneous formation of two alternative enzymology active structures by complementation of two overlapping fragments of staphylococcal nuclease. J. Biol. Chem. 246, 2291–1301 (1971).

    CAS  Google Scholar 

  30. Shiba, K. & Schimmel, P. Functional assembly of a randomly cleaved protein. Proc. Natl. Acad. Sci. USA 89, 1880–1884 (1992).

    Article  CAS  Google Scholar 

  31. Pecorari, F., Minard, P., Desmadril, M. & Yon, J.M. Structure and functional complementation of engineered fragments from yeast phosphoglycerate kinase. Protein Eng. 6, 313–325 (1993).

    Article  CAS  Google Scholar 

  32. Johnsson, N. & Varshavsky, A. Split ubiquitin as a sensor of protein interactions in vivo. Proc. Natl. Acad. Sci. USA 91, 10340–10344 (1994).

    Article  CAS  Google Scholar 

  33. Schonberger, O., Knox, C., Bibi, E. & Pines, O. Split invertase polypeptides form functional complexes in the yeast periplasm in vivo. Proc. Natl. Acad. Sci. USA 93, 9612–9617 (1996).

    Article  CAS  Google Scholar 

  34. Rossi, F., Charlton, C.A. & Blau, H. Monitoring protein–protein interactions in intact eukaryotic cells by β-galactosidase complementation. Proc. Natl. Acad. Sci. USA 94, 8405–8410 (1997).

    Article  CAS  Google Scholar 

  35. Karimova, G., Pidoux, J., Ullmann, A. & Ladant, D. A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc. Natl. Acad. Sci. USA 95, 5752–5756 (1998).

    Article  CAS  Google Scholar 

  36. Pelletier, J.N., Campbell-Valois, F.-X. & Michnick, S.W. Oligomerization domain-directed reassembly of active dihydrofolate reductase from rationally designed fragments. Proc. Natl. Acad. Sci. USA 95, 12141–12146 (1998).

    Article  CAS  Google Scholar 

  37. Pelletier, J.N., Arndt, K.M., Pluckthun, A. & Michnick, S.W. An in vivo library-versus-library selection of optimized protein–protein interactions. Nat. Biotechnol. 17, 683–690 (1999).

    Article  CAS  Google Scholar 

  38. Zabin, I. & Villarejo, M.R. Protein complementation. Annu. Rev. Biochem. 44, 296–314 (1975).

    Article  Google Scholar 

  39. Welply, J.K., Fowler, A.V. & Zabin, I. β-Galactosidase α–complementation. J. Biol. Chem. 256, 6811–6816 (1981).

    CAS  Google Scholar 

  40. Lee, S.C., Choi, Y.C. & Yu, M.H. Effect of the N-terminal hydrophobic sequence of hepatitis B virus antigen on the folding and assembly of hybrid beta-galactosidase in Escherichia coli. Eur. J. Biochem. 187, 417–424 (1990).

    Article  CAS  Google Scholar 

  41. Waldo, G.S., Standish, B.M., Berendzen, J. & Terwilliger, T.C. Rapid protein-folding assay using green fluorescent protein. Nat. Biotechnol. 17, 691–695 (1999).

    Article  CAS  Google Scholar 

  42. Maxwell, K.L., Mittermaier, A.K., Forman-Kay, J.D. & Davidson, A.R. A simple in vivo assay for increased protein solubility. Protein Sci. 8, 1908–1911 (1999).

    Article  CAS  Google Scholar 

  43. Yanish-Perron, C., Vieira, J. & Messing, J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103–119 (1985).

    Article  Google Scholar 

  44. Betton, J.-M. & Hofnung, M. Folding of a mutant maltose-binding protein of Escherichia coli which forms inclusion bodies. J. Biol. Chem. 271, 8046–8052 (1996).

    Article  CAS  Google Scholar 

  45. Huang, K.X., Huang, Q.L., Wildung, M.R., Croteau, R. & Scott, A.I. Overproduction, in Escherichia coli, of soluble taxadiene synthase, a key enzyme in the Taxol biosynthetic pathway. Protein Expr. Purif. 13, 90–96 (1998).

    Article  CAS  Google Scholar 

  46. King, S.A. & Sorscher, E.J. Recombinant synthesis of cystic fibrosis transmembrane conductance regulator and functional nucleotide-binding domains. Methods Enzymol. 292, 686–697 (1998).

    Article  CAS  Google Scholar 

  47. Qu, B.-H. & Thomas, P.J. Alteration of the cystic fibrosis transmembrane conductance regulator folding pathway: effects of the deta-F508 mutation on the thermodynamic stability and folding yield of NBD1. J. Biol. Chem. 271, 7261–7264 (1996).

    Article  CAS  Google Scholar 

  48. Ko, Y.H., Thomas, P.J., Delannoy, M.R. & Pedersen, P.L. The cystic fibrosis transmembrane conductance regulator. Overexpression, purification, and characterization of wild type and ΔF508 mutant forms of the first nucleotide binding fold in fusion with the maltose-binding protein. J. Biol. Chem. 268, 24330–24338 (1993).

    CAS  Google Scholar 

  49. Wood, S.J., Wetzel, R., Martin, J.D. & Hurle, M.R. Prolines and amyloidogenicity in fragments of the Alzheimer's peptide β/A4. Biochemistry 34, 724–730. (1995).

    Article  CAS  Google Scholar 

  50. Culvenor, J.G. et al. Subcellular localization of the Alzheimer's disease amyloid precursor protein and derived polypeptides expressed in a recombinant yeast system. Amyloid: Int. J. Exp. Clin. Invest. 5, 79–89 (1998).

    Article  CAS  Google Scholar 

  51. Kazantsev, A., Preisinger, E., Dranovsky, A., Goldgaber, D. & Housman, D. Insoluble detergent-resistant aggregates form between pathological and nonpathological lengths of polyglutamine in mammalian cells. Proc. Natl. Acad. Sci. USA 96, 11404–11409 (1999).

    Article  CAS  Google Scholar 

  52. Senut, M.C., Suhr, S.T., Kaspar, B. & Gage, F.H. Intraneuronal aggregate formation and cell death after viral expression of expanded polyglutamine tracts in the adult rat brain. J. Neurosci. 20, 219–229 (2000).

    Article  CAS  Google Scholar 

  53. Luzzago, A. & Cesareni, G. Isolation of point mutations that affect the folding of the H chain of human ferritin in E. coli. EMBO J. 8, 569–576 (1989).

    Article  CAS  Google Scholar 

  54. Jappelli, R., Luzzago, A., Tataseo, P., Pernice, I. & Cesareni, G. Loop mutations can cause a substantial conformation change in the carboxy terminus of the ferritin protein. J. Mol. Biol. 227, 532–543 (1992).

    Article  CAS  Google Scholar 

  55. Bell, E.T. Hyalinization of the islets of Langerhans in diabetes mellitus. Diabetes 1, 344 (1952).

    Article  Google Scholar 

  56. Hainaut, P. & Milner, J. Interaction of heat-shock protein 70 with p53 translated in vitro: evidence for interaction with dimeric p53 and for a role in the regulation of p53 conformation. EMBO J. 11, 3513–3520 (1992).

    Article  CAS  Google Scholar 

  57. Foster, B.A., Coffey, H.A., Morin, M.J. & Rastinejad, F. Pharmacological rescue of mutant p53 conformation and function. Science 286, 2507–2510 (1999).

    Article  CAS  Google Scholar 

  58. Hung, L.W. et al. Crystal structure of the ATP-binding subunit of an ABC transporter. Nature 396, 703–707 (1998).

    Article  CAS  Google Scholar 

  59. Schagger, H. & von Jagow, G. Tricine–sodium dodecyl sulfate–polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166, 368–379 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Muallem for helpful discussions and encouragement, M. Corboy for critical review of the manuscript, and members of our laboratories for helpful comments. This work was supported by a research grant from the Haberecht Foundation to W.C.W., a startup grant from Columbia University to J.F.H., and grants from the National Institutes of Health–National Institute of Diabetes and Digestive and Kidney Diseases and the Cystic Fibrosis Foundation to P.J.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip J. Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wigley, W., Stidham, R., Smith, N. et al. Protein solubility and folding monitored in vivo by structural complementation of a genetic marker protein. Nat Biotechnol 19, 131–136 (2001). https://doi.org/10.1038/84389

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/84389

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing