Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Transplanting Two Unique β-Glucanase Catalytic Activities Into One Multienzyme, Which Forms Glucose

Abstract

Endo cellulases of plant pathogenic erwinias degrade cellulose as well as the cellulosic domains of barley (1-3,1-4)-β-glucan. Depolymerization of the latter substrate is mainly caused by (1-3,1-4)-β-glucanases, which hydrolyze (1-4)-β glycosidic linkages adjacent to (1-3)-β linkages. To construct an enzyme for efficient degradation of barley (1-3,1-4)-β-glucan, the sequence encoding the catalytic domain and interdomain linker of the cellulase from Erwinia carotovora subspecies atroseptica was fused to that for the heat stable Bacillus hybrid, H(A12-M)ΔY13 (1-3,1-4)-β-glucanase. The chimeric enzyme secreted from Escherichia coli cells did not remain covalently assembled as judged by SDS-PAGE. However, the glycosylated and intact enzyme (denoted CELGLU) is secreted from the yeast Pichia pastoris. CELGLU exhibits both cellulase and (1-3,1-4)-δ-glucanase catalytic activities, and was accordingly classified a true multienzyme. HPLC and NMR analyses revealed that among the products from CELGLU, di- and trimeric oligosaccharides were identical to those produced by the parental cellulase. Tetrameric oligosaccharides, derived from the (1-3,1-4)-β-glucanase activity of CELGLU, were further degraded by the cellulase moiety to yield glucose and trimers. Compared with the parental enzymes, CELGLU exhibits substantially higher Vmax for degradation of both soluble cellulose and barley (1-3,1-4)-β-glucan. These findings point to construction of multienzymes as an effective approach for engineering enzymes with novel characteristics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Woodward, J. R., Fincher, G. B. and Stone, B. A. 1983. Water soluble (1→3), (1→4)-β-D-glucans from barley (Hordeum vulgare) endosperm. II. Fine structure. Carbohydr. Polym. 3: 207–225.

    Article  CAS  Google Scholar 

  2. Bock, K., Duus, J. Ø., Norman, B. and Pedersen, S. 1991. Assignment of structures to oligosaccharides produced by enzymic degradation of a β-D-glucan from barley by 1H- and 13C-n.m.r. spectroscopy. Carbohydr. Res. 211: 219–233.

    Article  CAS  PubMed  Google Scholar 

  3. Malet, C., Jiménez-Barbero, J., Bemabé, M., Brosa, C. and Planas, A. 1993. Stereochemical course and structure of the products of the enzymic action of endo-1,3-1,4-β-D-glucan 4-glucanohydrolase from Bacillus licheniformis. Biochem. J. 296: 753–758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wood, P. J., Erne, J. D., Teather, R. M., Weisz, J. and Miller, S. S. 1994. Comparison of (1→3)(1→4)-β-D-glucan-4-glucanohydrolases (E.C. 3.2.1.73) from Fibrobacter succinogenes and from Bacillus subtilis and use of high-performance anion exchange chromatography in product characterization. J. Cereal Sci. 19: 65–75.

    Article  CAS  Google Scholar 

  5. Wood, P. J., Weisz, J. and Blackwell, B. A. 1994. Structural studies of (1→3)(1→4)-β-D-glucans by 13C-nuclear magnetic resonance spetroscopy and by rapid analysis of cellulose-like regions using high-performace anion-exchange chromatography of oligosaccharides released by lichenase. Cereal Chem. 71: 301–307.

    CAS  Google Scholar 

  6. Fincher, G. B. 1975. Morphology and chemical composition of barley endosperm cell walls. J. Inst. Brew. 81: 116–122.

    Article  CAS  Google Scholar 

  7. Nevins, D.J., Yamamoto, R. and Huber, D. J. 1978. Cell wall β-D-glucans of five grass species. Phytochemistry 17: 1503–1505.

    Article  CAS  Google Scholar 

  8. McFadden, G.I., Ahluwalia, B., Clarke, A. E. and Fincher, G. B. 1988. Expression sites and developmental regulation of genes encoding (1→3, 1→4)-β-glucanases in germinated barley. Planta 173: 500–508.

    Article  CAS  PubMed  Google Scholar 

  9. Woodward, J. R. and Fincher, G. B. 1982. Substrate specificities and kinetic properties of two (1→3),(1→4)-β-D-glucan endohydrolases from germinating barley (Hordeum vulgare). Carbohydr. Res. 106: 111–122.

    Article  CAS  Google Scholar 

  10. Parrish, F. W., Perlin, A. S. and Reese, E. T. 1960. Selective enzymolysis of poly-β-D-glucans, and the structure of the polymers. Can. J. Chem. 38: 2094–2104.

    Article  CAS  Google Scholar 

  11. Hoy, J.L., Macauley, B. J. and Fincher, G. B. 1981. Cellulases of plant and microbial origin in germinating barley. J. Inst. Brew. 87: 77–80.

    Article  CAS  Google Scholar 

  12. Bamforth, C. W. 1985. Biochemical approaches to beer quality. J. Inst. Brew. 91: 154–160.

    Article  CAS  Google Scholar 

  13. Campbell, G. L. and Bedford, M. R. 1992. Enzyme applications for mono-gastric feeds: A review. Can. J. Anim. Sci. 72: 449–466.

    Article  CAS  Google Scholar 

  14. Olsen, O., Borriss, R., Simon, O. and Thomsen, K. K. 1991. Hybrid Bacillus (1-3,1-4)-β-glucanases: engineering thermostable enzymes by construction of hybrid genes. Mol. Gen. Genet. 225: 177–185.

    Article  CAS  PubMed  Google Scholar 

  15. Battling, S., Wegener, C. and Olsen, O. 1995. Syngergism between Erwinia pectate lyase isoenzymes that depolymerize both pectate and pectin. Microbiol. 141: 873–881.

    Article  Google Scholar 

  16. Greenwood, J. M., Ong, E., Gilkes, N. R., Warren, R. A. J., Miller, R. C., Jr. and Kilburn, D. G. 1992. Cellulose-binding domains: potential for purification of complex proteins. Protein Engng. 5: 361–365.

    Article  CAS  Google Scholar 

  17. Rodseth, L.E., Martineau, P., Duplay, P., Hofnung, M. and Quiocho, F. A. 1990. Crystallization of genetically engineered active maltose-binding proteins including an immunogenic viral epitope insertion. J. Mol. Biol. 213: 607–611.

    Article  CAS  PubMed  Google Scholar 

  18. Feng, G., Gray, P. W., Shepard, M. and Taylor, M. W. 1988. Antiproliferative activity of a hybrid protein between interferon-γ and tumor necrosis factor-β. Science 241: 1501–1503.

    Article  CAS  PubMed  Google Scholar 

  19. Nomenclature Committee of the International Union of Biochemistry. 1989. Nomenclature for multienzymes. Eur. J. Biochem. 185: 485–486.

  20. Argos, P. 1990. An investigation of oligopeptides linking domains in protein tertiary structures and possible candidates for general gene fusion. J. Mol. Biol. 211: 943–958.

    Article  CAS  PubMed  Google Scholar 

  21. Politz, O., Simon, O., Olsen, O. and Borriss, R. 1993. Determinants for the enhanced thermostability of hybrid (1-3,1-4)-β-glucanases. Eur. J. Biochem. 216: 829–834.

    Article  CAS  PubMed  Google Scholar 

  22. Keitel, T., Simon, O., Borriss, R. and Heinemann, U. 1993. Molecular and active-site structure of a Bacillus (1-3,1-4)-β-glucanase. Proc. Natl. Acad. Sci. USA 90: 5287–5291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cooper, J. C. and Salmond, P. C. 1993. Molecular analysis of the major cellulase (CelV) of Erwinia carotovora: evidence for an evolutionary “mix-and match” of enzyme domains. Mol. Gen. Genet. 242: 341–350.

    Google Scholar 

  24. Bortoli-German, I., Brun, E., Py, B., Chippaux, M. and Barras, F. 1994. Periplasmic disulphide bond formation is essential for cellulase secretion by the plant pathogen Erwinia chrysanthemi. Mol. Microbiol. 11: 545–553.

    Article  CAS  PubMed  Google Scholar 

  25. Henrissat, B. and Bairoch, A. 1991. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 293: 781–788.

    Article  Google Scholar 

  26. Henrissat, B., Claeyssens, M., Tomme, P., Lemesle, L. and Mornon, J.-P. 1989. Cellulase families revealed by hydrophobic cluster analysis. Gene 81: 83–95.

    Article  CAS  PubMed  Google Scholar 

  27. Baird, S.D., Hefford, M. A., Johnson, D. A., Sung, W. L., Yaguchi, M. and Seligy, V. L. 1990. The Glu residue in the conserved Asn-Glu-Pro sequence of two highly divergent endo-β-l,4-glucanases is essential for enzymatic activity. Biochem. Biophys. Res. Commun. 169: 1035–1039.

    Article  CAS  PubMed  Google Scholar 

  28. Py, B., Bortoli-German, I., Haiech, J., Chippaux, M. and Barras, F. 1991. Cellulase EGZ of Erwinia chrysanthemi: structural organization and importance of His98 and Glul33 residues for catalysis. Protein Engng. 4: 325–333.

    Article  CAS  Google Scholar 

  29. Wood, W.B., Wilson, J. H., Benbow, R. M. and Hood, L. E. 1981. Proteins in solution and enzyme mechanisms. In: Biochemistry, a Problems Approach. The Benjamin/Cummings Publishing Company, Menlo Park, California.

    Google Scholar 

  30. Malet, C., Jiménez-Barbero, J., Bernabé, M., Brosa, C. and Planas, A. 1993. Stereochemical course and structure of the products of the enzymic action of endo-1,3-1,4-β-D-glucan 4-glucanohydrolase from Bacillus licheniformis. Biochem. J. 296: 753–758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Saul, D. J., Williams, L. C., Grayling, R. A., Chamley, L. W., Love, D. R. and Bergquist, P. L. 1990. celB, a gene coding for a bifunctional cellulase from the extreme thermophile “Caldocellum saccharolyticum”. Appl. Environ. Microbiol. 56: 3117–3124.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Flint, H.J., Martin, J., McPherson, C. A., Daniel, A. S. and Zhang, J.-X. 1993. A bifunctional enzyme, with separate xylanase and β(1,3-1,4)-glucanase domains, encoded by the xynD gene of Ruminococcus flavefaciens. J. Bacteriol. 175: 2943–2951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gilkes, N.R., Kilburn, D. G., Miller, R. C. and Warren, R. A. J. 1989. Structural and functional analysis of a bacterial cellulase by proteolysis. J. Biol. Chem. 264: 17802–17808.

    CAS  PubMed  Google Scholar 

  34. Srisodsuk, M., Reinikainen, T., Penttilä, M. and Teeri, T. T. 1993. Role of the inderdomain linker peptide of Trichoderma reesei cellobiohydrolase I in its interaction with crystalline cellulose. J. Biol. Chem. 268: 20756–20761.

    CAS  PubMed  Google Scholar 

  35. Ong, E., Kilburn, D. G., Miller, R. C. and Warren, R. A. J. 1994. Streptomyces lividans glycosylates the linker region of a β-l,4-glycanase from Cellulomonas fimi. J. Bacteriol. 176: 999–1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Studier, F. W., Rosenberg, A. H., Dunn, J. J. and Dubendorff, J. W. 1990. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 185: 60–89.

    Article  CAS  PubMed  Google Scholar 

  37. Sambrook, J., Fritsch, E. F. and Maniatis, T. 1989. In: Molecular Cloning. A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  38. Teather, R. M. and Wood, P. J. 1982. Use of Congo Red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Environ. Microbiol. 43: 777–780.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ellis, S.B., Brust, P. F., Koutz, P. J., Waters, A. F., Harpold, M. M. and Gingeras, T. R. 1985. Isolation of alcohol oxidase and two other methanol regulatable genes from the yeast Pichia pastoris. Mol. Cell. Biol. 5: 1111–1121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chatterjee, A.K., Buchanan, G. E., Behrens, M. K. and Starr, M. P. 1979. Syntheses and excretion of polygalacturonic acid trans-eliminase in Erwinia, Yersinia, and Klebsiella species. Can. J. Microbiol. 25: 94–102.

    Article  CAS  PubMed  Google Scholar 

  41. Cornish-Bowden, A. and Eisenthal, R. 1978. Estimation of Michaelis constant and maximum velocity from the direct linear plot. Biochim. Biophys. Acta. 525: 268–272.

    Article  Google Scholar 

  42. Cheetham, N. W. H., Sirimanne, P. and Royday, W. 1981. High-performance liquid chromatographic separation of carbohydrate oligomers. J. Chromatogr. 207: 439–444.

    Article  CAS  Google Scholar 

  43. Kær, M., Andersen, K. V. and Poulsen, F. M. 1994. Automated and semiautomated analysis of homo- and heteronuclear multidimensional nuclear magnetic resonance spectra of proteins: The program Pronto. Methods Enzymol. 239: 288–307.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olsen, O., Thomsen, K., Weber, J. et al. Transplanting Two Unique β-Glucanase Catalytic Activities Into One Multienzyme, Which Forms Glucose. Nat Biotechnol 14, 71–76 (1996). https://doi.org/10.1038/nbt0196-71

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0196-71

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing