Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Why is there selective subcortical vulnerability in ADHD? Clues from postmortem brain gene expression data

Abstract

Sub-cortical volumetric differences were associated with attention-deficit/hyperactivity disorder (ADHD) in a recent multi-site, mega-analysis of 1713 ADHD persons and 1529 controls. As there was a wide range of effect sizes among the sub-cortical volumes, it is possible that selective neuronal vulnerability has a role in these volumetric losses. To address this possibility, we used data from Allen Brain Atlas to investigate variability in gene expression profiles between subcortical regions of typically developing brains. We tested the hypothesis that the expression of genes in a set of curated ADHD candidate genes and five a priori selected, biological pathways would be associated with the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) findings. Across the subcortical regions studied by ENIGMA, gene expression profiles for three pathways were significantly correlated with ADHD-associated volumetric reductions: apoptosis, oxidative stress and autophagy. These correlations were strong and significant for children with ADHD, but not for adults. Although preliminary, these data suggest that variability of structural brain anomalies in ADHD can be explained, in part, by the differential vulnerability of these regions to mechanisms mediating apoptosis, oxidative stress and autophagy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Faraone SV, Asherson P, Banaschewski T, Biederman J, Buitelaar JK, Ramos-Quiroga JA et al. Attention-deficit/hyperactivity disorder. Nat Rev Dis Primers 2015; 1: 15020.

    Article  Google Scholar 

  2. Banerjee TD, Middleton F, Faraone SV. Environmental risk factors for attention-deficit hyperactivity disorder. Acta Pediatr 2007; 96: 1269–1274.

    Article  Google Scholar 

  3. Rubia K, Alegria AA, Brinson H. Brain abnormalities in attention-deficit hyperactivity disorder: a review. Rev Neurol 2014; 58(Suppl 1): S3–S16.

    PubMed  Google Scholar 

  4. Valera EM, Faraone SV, Murray KE, Seidman LJ. Meta-analysis of structural imaging findings in attention-deficit/hyperactivity disorder. Biol Psychiatry 2007; 61: 1361–1369.

    Article  Google Scholar 

  5. Spencer TJ, Brown A, Seidman LJ, Valera EM, Makris N, Lomedico A et al. Effect of psychostimulants on brain structure and function in ADHD: a qualitative literature review of magnetic resonance imaging-based neuroimaging studies. J Clin Psychiatry 2013; 74: 902–917.

    Article  Google Scholar 

  6. Hoogman M, Bralten J, Hibar DP, Mennes M, Zwiers MP, Schweren LS et al. Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults: a cross-sectional mega-analysis. Lancet Psychiatry 2017; 4: 310–319.

    Article  Google Scholar 

  7. Wang X, Michaelis EK. Selective neuronal vulnerability to oxidative stress in the brain. Front Aging Neurosci 2010; 2: 12.

    PubMed  PubMed Central  Google Scholar 

  8. Saxena S, Caroni P. Selective neuronal vulnerability in neurodegenerative diseases: from stressor thresholds to degeneration. Neuron 2011; 71: 35–48.

    Article  CAS  Google Scholar 

  9. Roselli F, Caroni P. From intrinsic firing properties to selective neuronal vulnerability in neurodegenerative diseases. Neuron 2015; 85: 901–910.

    Article  CAS  Google Scholar 

  10. Joseph N, Zhang-James Y, Perl A, Faraone SV. Oxidative stress and attention deficit hyperactivity disorder: a meta-analysis. J Atten Disord 2015; 19: 915–924.

    Article  Google Scholar 

  11. Reus GZ, Scaini G, Jeremias GC, Furlanetto CB, Morais MO, Mello-Santos LM et al. Brain apoptosis signaling pathways are regulated by methylphenidate treatment in young and adult rats. Brain Res 2014; 1583: 269–276.

    Article  CAS  Google Scholar 

  12. Thapar A, Martin J, Mick E, Arias Vasquez A, Langley K, Scherer SW et al. Psychiatric gene discoveries shape evidence on ADHD's biology. Mol Psychiatry 2016; 21: 1202–1207.

    Article  CAS  Google Scholar 

  13. Poelmans G, Pauls DL, Buitelaar JK, Franke B. Integrated genome-wide association study findings: identification of a neurodevelopmental network for attention deficit hyperactivity disorder. Am J Psychiatry 2011; 168: 365–377.

    Article  Google Scholar 

  14. Neale BM, Medland SE, Ripke S, Asherson P, Franke B, Lesch KP et al. Meta-analysis of genome-wide association studies of attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 2010; 49: 884–897.

    Article  Google Scholar 

  15. Brookes K, Xu X, Chen W, Zhou K, Neale B, Lowe N et al. The analysis of 51 genes in DSM-IV combined type attention deficit hyperactivity disorder: association signals in DRD4, DAT1 and 16 other genes. Mol Psychiatry 2006; 11: 934–935.

    Article  CAS  Google Scholar 

  16. Sunkin SM, Ng L, Lau C, Dolbeare T, Gilbert TL, Thompson CL et al. Allen Brain Atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic Acids Res 2013; 41(Database issue): D996–D1008.

    CAS  PubMed  Google Scholar 

  17. Demmontis D, Walters RK, Matrin J, Mattheisen M, Als TD, Agerbro E et al. Discovery of the first genome-wide significant risk loci for ADHD. BiorXiv 2017.

  18. de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput Biol 2015; 11: e1004219.

    Article  Google Scholar 

  19. Zheng J, Erzurumluoglu AM, Elsworth BL, Kemp JP, Howe L, Haycock PC et al. LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics 2017; 33: 272–279.

    Article  CAS  Google Scholar 

  20. Chen YC, Sudre G, Sharp W, Donovan F, Chandrasekharappa SC, Hansen N et al. Neuroanatomic, epigenetic and genetic differences in monozygotic twins discordant for attention deficit hyperactivity disorder. Mol Psychiatry 2017.

  21. Lushchak VI. Free radicals, reactive oxygen species, oxidative stresses and their classifications. Ukr Biochem J 2015; 87: 11–18.

    Article  CAS  Google Scholar 

  22. Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol 2003; 552(Pt 2): 335–344.

    Article  CAS  Google Scholar 

  23. Halliwell B. Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am J Med 1991; 91: 14S–22S.

    Article  CAS  Google Scholar 

  24. Lee J, Giordano S, Zhang J. Autophagy mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J 2012; 441: 523–540.

    Article  CAS  Google Scholar 

  25. Bloch MH, Qawasmi A. Omega-3 fatty acid supplementation for the treatment of children with attention-deficit/hyperactivity disorder symptomatology: systematic review and meta-analysis. J Am Acad Child Adolesc Psychiatry 2011; 50: 991–1000.

    Article  Google Scholar 

  26. Chovanova Z, Muchova J, Sivonova M, Dvorakova M, Zitnanova I, Waczulikova I et al. Effect of polyphenolic extract, Pycnogenol, on the level of 8-oxoguanine in children suffering from attention deficit/hyperactivity disorder. Free Radic Res 2006; 40: 1003–1010.

    Article  CAS  Google Scholar 

  27. Garcia RJ, Francis L, Dawood M, Lai ZW, Faraone SV, Perl A. Attention deficit and hyperactivity disorder scores are elevated and respond to NAC treatment in patients with SLE. Arthritis Rheum 2013; 65: 1313–1318.

    Article  CAS  Google Scholar 

  28. Leffa DT, Bellaver B, de Oliveira C, de Macedo IC, de Freitas JS, Grevet EH et al. Increased oxidative parameters and decreased cytokine levels in an animal model of attention-deficit/hyperactivity disorder. Neurochem Res 2017; 42: 3084–3092.

    Article  CAS  Google Scholar 

  29. Fulda S, Gorman AM, Hori O, Samali A. Cellular stress responses: cell survival and cell death. Int J Cell Biol 2010; 2010: 214074.

    PubMed  PubMed Central  Google Scholar 

  30. Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N. Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta 2013; 1833: 3448–3459.

    Article  CAS  Google Scholar 

  31. Maday S. Mechanisms of neuronal homeostasis: autophagy in the axon. Brain Res 2016; 1649(Pt B): 143–150.

    Article  CAS  Google Scholar 

  32. Lee JA. Neuronal autophagy: a housekeeper or a fighter in neuronal cell survival? Exp Neurobiol 2012; 21: 1–8.

    Article  Google Scholar 

  33. Lv X, Jiang H, Li B, Liang Q, Wang S, Zhao Q et al. The crucial role of Atg5 in cortical neurogenesis during early brain development. Sci Rep 2014; 4: 6010.

    Article  CAS  Google Scholar 

  34. Gao Q, Liu L, Chen Y, Li H, Yang L, Wang Y et al. Synaptosome-related (SNARE) genes and their interactions contribute to the susceptibility and working memory of attention-deficit/hyperactivity disorder in males. Prog Neuropsychopharmacol Biol Psychiatry 2015; 57: 132–139.

    Article  CAS  Google Scholar 

  35. Fekadu J, Rami A. Beclin-1 deficiency alters autophagosome formation, lysosome biogenesis and enhances neuronal vulnerability of ht22 hippocampal cells. Mol Neurobiol 2015; 53: 5500–5509.

    Article  Google Scholar 

  36. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol 2007; 35: 495–516.

    Article  CAS  Google Scholar 

  37. Haanen C, Vermes I. Apoptosis and inflammation. Mediators Inflamm 1995; 4: 5–15.

    Article  CAS  Google Scholar 

  38. Awasaki T, Tatsumi R, Takahashi K, Arai K, Nakanishi Y, Ueda R et al. Essential role of the apoptotic cell engulfment genes draper and ced-6 in programmed axon pruning during Drosophila metamorphosis. Neuron 2006; 50: 855–867.

    Article  CAS  Google Scholar 

  39. Snigdha S, Smith ED, Prieto GA, Cotman CW. Caspase-3 activation as a bifurcation point between plasticity and cell death. Neurosci Bull 2012; 28: 14–24.

    Article  CAS  Google Scholar 

  40. Gilman CP, Mattson MP. Do apoptotic mechanisms regulate synaptic plasticity and growth-cone motility? Neuromolecular Med 2002; 2: 197–214.

    Article  CAS  Google Scholar 

  41. Lo SC, Wang Y, Weber M, Larson JL, Scearce-Levie K, Sheng M. Caspase-3 deficiency results in disrupted synaptic homeostasis and impaired attention control. J Neurosci 2015; 35: 2118–2132.

    Article  CAS  Google Scholar 

  42. Valbonesi S, Magri C, Traversa M, Faraone SV, Cattaneo A, Milanesi E et al. Copy number variants in attention-deficit hyperactive disorder: identification of the 15q13 deletion and its functional role. Psychiatr Genet 2015; 25: 59–70.

    Article  CAS  Google Scholar 

  43. Xu P, Gu R, Broster LS, Wu R, Van Dam NT, Jiang Y et al. Neural basis of emotional decision making in trait anxiety. J Neurosci 2013; 33: 18641–18653.

    Article  CAS  Google Scholar 

  44. Dalby KN, Tekedereli I, Lopez-Berestein G, Ozpolat B. Targeting the prodeath and prosurvival functions of autophagy as novel therapeutic strategies in cancer. Autophagy 2010; 6: 322–329.

    Article  CAS  Google Scholar 

  45. Marino G, Niso-Santano M, Baehrecke EH, Kroemer G. Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 2014; 15: 81–94.

    Article  CAS  Google Scholar 

  46. Rubinstein AD, Kimchi A. Life in the balance—a mechanistic view of the crosstalk between autophagy and apoptosis. J Cell Sci 2012; 125(Pt 22): 5259–5268.

    Article  CAS  Google Scholar 

  47. Hou W, Han J, Lu C, Goldstein LA, Rabinowich H. Autophagic degradation of active caspase-8: a crosstalk mechanism between autophagy and apoptosis. Autophagy 2010; 6: 891–900.

    Article  CAS  Google Scholar 

  48. Tanaka K, Whelan KA, Chandramouleeswaran PM, Kagawa S, Rustgi SL, Noguchi C et al. ALDH2 modulates autophagy flux to regulate acetaldehyde-mediated toxicity thresholds. Am J Cancer Res 2016; 6: 781–796.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Rodney GG, Pal R, Abo-Zahrah R. Redox regulation of autophagy in skeletal muscle. Free Radic Biol Med 2016; 98: 103–112.

    Article  CAS  Google Scholar 

  50. Zhang L, Wang K, Lei Y, Li Q, Nice EC, Huang C. Redox signaling: potential arbitrator of autophagy and apoptosis in therapeutic response. Free Radic Biol Med 2015; 89: 452–465.

    Article  CAS  Google Scholar 

  51. Huang J, Lam GY, Brumell JH. Autophagy signaling through reactive oxygen species. Antioxid Redox Signal 2011; 14: 2215–2231.

    Article  CAS  Google Scholar 

  52. Cabal-Hierro L, Lazo PS. Signal transduction by tumor necrosis factor receptors. Cell Signal 2012; 24: 1297–1305.

    Article  CAS  Google Scholar 

  53. Sriram K, O'Callaghan JP. Divergent roles for tumor necrosis factor-alpha in the brain. J Neuroimmune Pharmacol 2007; 2: 140–153.

    Article  Google Scholar 

  54. International Multiple Sclerosis Genetics C, Wellcome Trust Case Control C, Sawcer S, Hellenthal G, Pirinen M, Spencer CC, Patsopoulos NA et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 2011; 476: 214–219.

    Article  Google Scholar 

  55. Instanes JT, Halmoy A, Engeland A, Haavik J, Furu K, Klungsoyr K. Attention-deficit/hyperactivity disorder in offspring of mothers with inflammatory and immune system diseases. Biol Psychiatry 2017; 81: 452–459.

    Article  Google Scholar 

  56. Onnink AM, Zwiers MP, Hoogman M, Mostert JC, Dammers J, Kan CC et al. Deviant white matter structure in adults with attention-deficit/hyperactivity disorder points to aberrant myelination and affects neuropsychological performance. Prog Neuropsychopharmacol Biol Psychiatry 2015; 63: 14–22.

    Article  Google Scholar 

  57. Kondo N, Takahashi A, Ono K, Ohnishi T. DNA damage induced by alkylating agents and repair pathways. J Nucleic Acids 2010; 2010: 543531.

    Article  Google Scholar 

Download references

Acknowledgments

Dr Faraone is supported by the K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway, the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement number 602805, the European Union’s Horizon 2020 research and innovation programme under grant agreement number 667302 and NIMH grants 5R01MH101519 and U01 MH109536-01. Dr Akutagava-Martins’ contribution was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S V Faraone.

Ethics declarations

Conflict of Interest

In the past year, Dr Faraone received income, potential income, travel expenses continuing education support and/or research support from Lundbeck, Rhodes, Arbor, KenPharm, Ironshore, Shire, Akili Interactive Labs, CogCubed, Alcobra, VAYA, Sunovion, Genomind and Neurolifesciences. With his institution, he has US patent US20130217707 A1 for the use of sodium-hydrogen exchange inhibitors in the treatment of ADHD. In previous years, he received support from: Shire, Neurovance, Alcobra, Otsuka, McNeil, Janssen, Novartis, Pfizer and Eli Lilly. Dr Faraone receives royalties from books published by Guilford Press: Straight Talk about Your Child’s Mental Health, Oxford University Press: Schizophrenia: The Facts and Elsevier: ADHD: Non-Pharmacologic Interventions. He is principal investigator of www.adhdinadults.com. All other authors declare no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hess, J.L., Akutagava-Martins, G.C., Patak, J.D. et al. Why is there selective subcortical vulnerability in ADHD? Clues from postmortem brain gene expression data. Mol Psychiatry 23, 1787–1793 (2018). https://doi.org/10.1038/mp.2017.242

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2017.242

This article is cited by

Search

Quick links