Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mesenchymal stem cells increase hippocampal neurogenesis and counteract depressive-like behavior

Abstract

Adult bone marrow-derived mesenchymal stem cells (MSCs) are regarded as potential candidates for treatment of neurodegenerative disorders, because of their ability to promote neurogenesis. MSCs promote neurogenesis by differentiating into neural lineages as well as by expressing neurotrophic factors that enhance the survival and differentiation of neural progenitor cells. Depression has been associated with impaired neurogenesis in the hippocampus and dentate gyrus. Therefore, the aim of this study was to analyze the therapeutic potential of MSCs in the Flinders sensitive line (FSL), a rat animal model for depression. Rats received an intracerebroventricular injection of culture-expanded and 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiI)-labeled bone marrow-derived MSCs (105 cells). MSC-transplanted FSL rats showed significant improvement in their behavioral performance, as measured by the forced swim test and the dominant–submissive relationship (DSR) paradigm. After transplantation, MSCs migrated mainly to the ipsilateral dentate gyrus, CA1 and CA3 regions of the hippocampus, and to a lesser extent to the thalamus, hypothalamus, cortex and contralateral hippocampus. Neurogenesis was increased in the ipsilateral dentate gyrus and hippocampus of engrafted rats (granular cell layer) and was correlated with MSC engraftment and behavioral performance. We therefore postulate that MSCs may serve as a novel modality for treating depressive disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Trivedi MH, Rush AJ, Wisniewski SR, Nierenberg AA, Warden D, Ritz L et al. Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. Am J Psychiatry 2006; 163: 28–40.

    PubMed  Google Scholar 

  2. Nierenberg AA, Keefe BR, Leslie VC, Alpert JE, Pava JA, Worthington III JJ et al. Residual symptoms in depressed patients who respond acutely to fluoxetine. J Clin Psychiatry 1999; 60: 221–225.

    CAS  PubMed  Google Scholar 

  3. Trivedi MH, Hollander E, Nutt D, Blier P . Clinical evidence and potential neurobiological underpinnings of unresolved symptoms of depression. J Clin Psychiatry 2008; 69: 246–258.

    PubMed  Google Scholar 

  4. Prockop DJ . Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997; 276: 71–74.

    CAS  PubMed  Google Scholar 

  5. Grove JE, Bruscia E, Krause DS . Plasticity of bone marrow-derived stem cells. Stem Cells 2004; 22: 487–500.

    PubMed  Google Scholar 

  6. Zhang H, Huang Z, Xu Y, Zhang S . Differentiation and neurological benefit of the mesenchymal stem cells transplanted into the rat brain following intracerebral hemorrhage. Neurol Res 2006; 28: 104–112.

    PubMed  Google Scholar 

  7. Crigler L, Robey RC, Asawachaicharn A, Gaupp D, Phinney DG . Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp Neurol 2006; 198: 54–64.

    CAS  PubMed  Google Scholar 

  8. Munoz JR, Stoutenger BR, Robinson AP, Spees JL, Prockop DJ . Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice. Proc Natl Acad Sci 2005; 102: 18171–18176.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Yoo SW, Kim SS, Lee SY, Lee HS, Kim HS, Lee YD et al. Mesenchymal stem cells promote proliferation of endogenous neural stem cells and survival of newborn cells in a rat stroke model. Exp Mol Med 2008; 40: 387–397.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hamada H, Kobune M, Nakamura K, Kawano Y, Kato K, Honmou O et al. Mesenchymal stem cells (MSC) as therapeutic cytoreagents for gene therapy. Cancer Sci 2005; 96: 149–156.

    CAS  PubMed  Google Scholar 

  11. Dezawa M . Systematic neuronal and muscle induction systems in bone marrow stromal cells: the potential for tissue reconstruction in neurodegenerative and muscle degenerative diseases. Med Mol Morphol 2008; 41: 14–19.

    CAS  PubMed  Google Scholar 

  12. Karussis D, Kassis I, Kurkalli BG, Slavin S . Immunomodulation and neuroprotection with mesenchymal bone marrow stem cells (MSCs): a proposed treatment for multiple sclerosis and other neuroimmunological/neurodegenerative diseases. J Neurol Sci 2008; 265: 131–135.

    CAS  PubMed  Google Scholar 

  13. Kan I, Melamed E, Offen D . Autotransplantation of bone marrow-derived stem cells as a therapy for neurodegenerative diseases. Handb Exp Pharmacol 2007; 180: 219–242.

    CAS  Google Scholar 

  14. Dranovsky A, Hen R . Hippocampal neurogenesis: regulation by stress and antidepressants. Biol Psychiatry 2006; 59: 1136–1143.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Thomas RM, Hotsenpiller G, Peterson DA . Acute psychosocial stress reduces cell survival in adult hippocampal neurogenesis without altering proliferation. J Neurosci 2007; 27: 2734–2743.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Fossati P, Radtchenko A, Boyer P . Neuroplasticity: from MRI to depressive symptoms. Eur Neuropsychopharmacol 2004; 14 (Suppl 5): S503–S510.

    CAS  PubMed  Google Scholar 

  17. Husum SA . Exacerbated loss of cell survival, neuropeptide Y-immunoreactive (IR) cells, and serotonin-IR fiber lengths in the dorsal hippocampus of the aged flinders sensitive line ‘depressed’ rat: implications for the pathophysiology of depression? J Neurosci Res 2006; 84: 1292–1302.

    CAS  PubMed  Google Scholar 

  18. Gronli J, Bramham C, Murison R, Kanhema T, Fiske E, Bjorvatn B et al. Chronic mild stress inhibits BDNF protein expression and CREB activation in the dentate gyrus but not in the hippocampus proper. Pharmacol Biochem Behav 2006; 85: 842–849.

    CAS  PubMed  Google Scholar 

  19. Gaughran F, Payne J, Sedgwick PM, Cotter D, Berry M . Hippocampal FGF-2 and FGFR1 mRNA expression in major depression, schizophrenia and bipolar disorder. Brain Res Bull 2006; 70: 221–227.

    CAS  PubMed  Google Scholar 

  20. Kempermann G, Krebs J, Fabel K . The contribution of failing adult hippocampal neurogenesis to psychiatric disorders. Curr Opin Psychiatry 2008; 21: 290–295.

    PubMed  Google Scholar 

  21. Malberg JE, Schechter LE . Increasing hippocampal neurogenesis: a novel mechanism for antidepressant drugs. Curr Pharm Des 2005; 11: 145–155.

    CAS  PubMed  Google Scholar 

  22. Peister A, Zeitouni S, Pfankuch T, Reger RL, Prockop DJ, Raber J . Novel object recognition in Apoe−/− mice improved by neonatal implantation of wild-type multipotential stromal cells. Exp Neurol 2006; 201: 266–269.

    CAS  PubMed  Google Scholar 

  23. Ben Shaanan TL, Ben Hur T, Yanai J . Transplantation of neural progenitors enhances production of endogenous cells in the impaired brain. Mol Psychiatry 2007; 13: 222–231.

    PubMed  Google Scholar 

  24. Yadid G, Friedman A . Dynamics of the dopaminergic system as a key component to the understanding of depression. In: Di Giovanni G, Di Matteo V, Esposito E (eds). Progress in Brain Research Serotonin-Dopamine Interaction: Experimental Evidence and Therapeutic Relevance, Vol. 172 edn. Elsevier: Amsterdam, 2008 pp. 265–286.

    Google Scholar 

  25. Overstreet DH, Friedman E, Mathe AA, Yadid G . The flinders sensitive line rat: a selectively bred putative animal model of depression. Neurosci Biobehav Rev 2005; 29: 739–759.

    CAS  PubMed  Google Scholar 

  26. Zangi L, Rivkin R, Kassis I, Levdansky L, Marx G, Gorodetsky R . High-yield isolation, expansion, and differentiation of rat bone marrow derived mesenchymal stem cells with fibrin microbeads. Tissue Eng 2006; 12: 2343–2354.

    CAS  PubMed  Google Scholar 

  27. Dai W, Hale SL, Martin BJ, Kuang JQ, Dow JS, Wold LE et al. Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short- and long-term effects. Circulation 2005; 112: 214–223.

    PubMed  Google Scholar 

  28. Genud R, Merenlender A, Gispan-Herman I, Maayan R, Weizman A, Yadid G . DHEA lessens depressive-like behavior via GABA-ergic modulation of the mesolimbic system. Neuropsychopharmacology 2008; 34: 577–584.

    PubMed  Google Scholar 

  29. Malatynska E, Knapp RJ . Dominant-submissive behavior as models of mania and depression. Neurosci Biobehav Rev 2005; 29: 715–737.

    PubMed  Google Scholar 

  30. Friedman A, Frankel M, Flaumenhaft Y, Merenlender A, Pinhasov A, Feder Y et al. Programmed acute electrical stimulation of ventral tegmental area alleviates depressive-like behavior. Neuropsychopharmacology 2009; 34: 1057–1066.

    CAS  PubMed  Google Scholar 

  31. Shetty AK, Rao MS, Hattiangady B . Behavior of hippocampal stem/progenitor cells following grafting into the injured aged hippocampus. J Neurosci Res 2008; 86: 3062–3074.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Sinead MG . Differentiation of oligodendrocytes in neurospheres derived from embryonic rat brain using growth and differentiation factors. J Neurosci Res 2007; 85: 1912–1920.

    Google Scholar 

  33. Jin GZ, Cho SJ, Choi EG, Lee YS, Yu XF, Choi KS et al. Rat mesenchymal stem cells increase tyrosine hydroxylase expression and dopamine content in ventral mesencephalic cells in vitro. Cell Biol Int 2008; 32: 1433–1438.

    CAS  PubMed  Google Scholar 

  34. Koh SH, Noh MY, Cho GW, Kim KS, Kim SH . Erythropoietin increases the motility of human bone marrow multipotent stromal cells (hBM-MSCs) and enhances the production of neurotrophic factors from hBM-MSCs. Stem Cells Dev 2009; 18: 411–421.

    CAS  PubMed  Google Scholar 

  35. Hardy SA, Maltman DJ, Przyborski SA . Mesenchymal stem cells as mediators of neural differentiation. Curr Stem Cell Res Ther 2008; 3: 43–52.

    CAS  PubMed  Google Scholar 

  36. Lou SJ, Gu P, Chen F, He C, Wang MW, Lu CL . The effect of bone marrow stromal cells on neuronal differentiation of mesencephalic neural stem cells in Sprague-Dawley rats. Brain Res 2003; 968: 114–121.

    CAS  PubMed  Google Scholar 

  37. Pomp O, Brokhman I, Ziegler L, Almog M, Korngreen A, Tavian M et al. PA6-induced human embryonic stem cell-derived neurospheres: a new source of human peripheral sensory neurons and neural crest cells. Brain Res 2008; 1230: 50–60.

    CAS  PubMed  Google Scholar 

  38. Scuteri A, Donzelli E, Ravasi M, Tredici G . Adult mesenchymal stem cells support cisplatin-treated dorsal root ganglion survival. Neurosci Lett 2008; 445: 68–72.

    CAS  PubMed  Google Scholar 

  39. Hellmann MA, Panet H, Barhum Y, Melamed E, Offen D . Increased survival and migration of engrafted mesenchymal bone marrow stem cells in 6-hydroxydopamine-lesioned rodents. Neurosci Lett 2006; 395: 124–128.

    CAS  PubMed  Google Scholar 

  40. Sadan O, Shemesh N, Barzilay R, Bahat-Stromza M, Melamed E, Cohen Y et al. Migration of neurotrophic factors-secreting mesenchymal stem cells toward a quinolinic acid lesion as viewed by magnetic resonance imaging. Stem Cells 2008; 26: 2542–2551.

    CAS  PubMed  Google Scholar 

  41. Wu X, Hu J, Zhou L, Mao Y, Yang B, Gao L et al. In vivo tracking of superparamagnetic iron oxide nanoparticle-labeled mesenchymal stem cell tropism to malignant gliomas using magnetic resonance imaging laboratory investigation. J Neurosurg 2008; 108: 320–329.

    PubMed  Google Scholar 

  42. Nakamura K, Ito Y, Kawano Y, Kurozumi K, Kobune M, Tsuda H et al. Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Therapy 2004; 11: 1155–1164.

    CAS  PubMed  Google Scholar 

  43. Bexell D, Gunnarsson S, Tormin A, Darabi A, Gisselsson D, Roybon L et al. Bone marrow multipotent mesenchymal stroma cells act as pericyte-like migratory vehicles in experimental gliomas. Mol Ther 2009; 17: 183–190.

    CAS  PubMed  Google Scholar 

  44. Phinney DG, Baddoo M, Dutreil M, Gaupp D, Lai WT, Isakova IA . Murine mesenchymal stem cells transplanted to the central nervous system of neonatal versus adult mice exhibit distinct engraftment kinetics and express receptors that guide neuronal cell migration. Stem Cells Dev 2006; 15: 437–447.

    CAS  PubMed  Google Scholar 

  45. Isakova IA, Baker K, DuTreil M, Dufour J, Gaupp D, Phinney DG . Age- and dose-related effects on MSC engraftment levels and anatomical distribution in the central nervous systems of nonhuman primates: identification of novel MSC subpopulations that respond to guidance cues in brain. Stem Cells 2007; 25: 3261–3270.

    CAS  PubMed  Google Scholar 

  46. Kopen GC, Prockop DJ, Phinney DG . Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA 1999; 96: 10711–10716.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee RH, Hsu SC, Munoz J, Jung JS, Lee NR, Pochampally R et al. A subset of human rapidly self-renewing marrow stromal cells preferentially engraft in mice. Blood 2006; 107: 2153–2161.

    CAS  PubMed  Google Scholar 

  48. Qu C, Mahmood A, Lu D, Goussev A, Xiong Y, Chopp M . Treatment of traumatic brain injury in mice with marrow stromal cells. Brain Res 2008; 1208: 234–239.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Hardy SA, Maltman DJ, Przyborski SA . Mesenchymal stem cells as mediators of neural differentiation. Curr Stem Cell Res Ther 2008; 3: 43–52.

    CAS  PubMed  Google Scholar 

  50. Petersén A, Wörtwein G, Gruber SH, Mathé AA . Escitalopram reduces increased hippocampal cytogenesis in a genetic rat depression model. Neurosci Lett 2008; 436: 305–308.

    PubMed  Google Scholar 

  51. Tran PB, Banisadr G, Ren D, Chenn A, Miller RJ . Chemokine receptor expression by neural progenitor cells in neurogenic regions of mouse brain. J Comp Neurol 2007; 500: 1007–1033.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Berger O, Li G, Han SM, Paredes M, Pleasure SJ . Expression of SDF-1 and CXCR4 during reorganization of the postnatal dentate gyrus. Dev Neurosci 2007; 29: 48–58.

    CAS  PubMed  Google Scholar 

  53. Rai KS, Hattiangady B, Shetty AK . Enhanced production and dendritic growth of new dentate granule cells in the middle-aged hippocampus following intracerebroventricular FGF-2 infusions. Eur J Neurosci 2007; 26: 1765–1779.

    PubMed  Google Scholar 

  54. Laskowski A, Schmidt W, Dinkel K, Martínez-Sánchez M, Reymann KG . bFGF and EGF modulate trauma-induced proliferation and neurogenesis in juvenile organotypic hippocampal slice cultures. Brain Res 2005; 1037: 78–89.

    CAS  PubMed  Google Scholar 

  55. Kroes RA, Panksepp J, Burgdorf J, Otto NJ, Moskal JR . Modeling depression: social dominance-submission gene expression patterns in rat neocortex. Neuroscience 2006; 137: 37–49.

    CAS  PubMed  Google Scholar 

  56. Duan X, Kang E, Liu CY, Ming Gl, Song H . Development of neural stem cell in the adult brain. Curr Opin Neurobiol 2008; 18: 108–115.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lie DC, Colamarino SA, Song HJ, Desire L, Mira H, Consiglio A et al. Wnt signalling regulates adult hippocampal neurogenesis. Nature 2005; 437: 1370–1375.

    CAS  PubMed  Google Scholar 

  58. Lim DA, Tramontin AD, Trevejo JM, Herrera DG, García-Verdugo JM, Alvarez-Buylla A . Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 2000; 28: 713–726.

    CAS  PubMed  Google Scholar 

  59. Bonaguidi MA, McGuire T, Hu M, Kan L, Samanta J, Kessler JA . LIF and BMP signaling generate separate and discrete types of GFAP-expressing cells. Development 2005; 132: 5503–5514.

    CAS  PubMed  Google Scholar 

  60. Bjornebekk A, Mathe AA, Brene S . The antidepressant effect of running is associated with increased hippocampal cell proliferation. Int J Neuropsychopharmacol 2005; 8: 357–368.

    CAS  PubMed  Google Scholar 

  61. Cunningham MG, Donalds RA, Carlezon WAJ, Hong S, Kim DS, Kim DW et al. Antidepressant effect of stem cell-derived monoaminergic grafts. [Miscellaneous Article]. NeuroReport 2007; 18: 1663–1667.

    PubMed  Google Scholar 

  62. Malatynska E, Rapp R, Harrawood D, Tunnicliff G . Submissive behavior in mice as a test for antidepressant drug activity. Pharmacol Biochem Behav 2005; 82: 306–313.

    CAS  PubMed  Google Scholar 

  63. Mochizuki N, Takagi N, Onozato C, Moriyama Y, Takeo S, Tanonaka K . Delayed injection of neural progenitor cells improved spatial learning dysfunction after cerebral ischemia. Biochem Biophys Res Commun 2008; 368: 151–156.

    CAS  PubMed  Google Scholar 

  64. Mochizuki N, Takagi N, Kurokawa K, Onozato C, Moriyama Y, Tanonaka K et al. Injection of neural progenitor cells improved learning and memory dysfunction after cerebral ischemia. Exp Neurol 2008; 211: 194–202.

    CAS  PubMed  Google Scholar 

  65. Toda H, Takahashi J, Iwakami N, Kimura T, Hoki S, Mozumi-Kitamura K et al. Grafting neural stem cells improved the impaired spatial recognition in ischemic rats. Neurosci Lett 2001; 316: 9–12.

    CAS  PubMed  Google Scholar 

  66. Chopp M, Li Y . Treatment of neural injury with marrow stromal cells. Lancet Neurol 2002; 1: 92–100.

    PubMed  Google Scholar 

  67. Qu T, Brannen CL, Kim HM, Sugaya KC . Human neural stem cells improve cognitive function of aged brain. NeuroReport 2001; 12: 1127–1132.

    CAS  PubMed  Google Scholar 

  68. Wu S, Sasaki A, Yoshimoto R, Kawahara Y, Manabe T, Kataoka K et al. Neural stem cells improve learning and memory in rats with Alzheimer's disease. Pathobiology 2008; 75: 186–194.

    PubMed  Google Scholar 

  69. Frinchi M, Bonomo A, Trovato-Salinaro A, Condorelli DF, Fuxe K, Spampinato MG et al. Fibroblast growth factor-2 and its receptor expression in proliferating precursor cells of the subventricular zone in the adult rat brain. Neurosci Lett 2008; 447: 20–25.

    CAS  PubMed  Google Scholar 

  70. Maric D, Fiorio Pla A, Chang YH, Barker JL . Self-renewing and differentiating properties of cortical neural stem cells are selectively regulated by basic fibroblast growth factor (FGF) signaling via specific FGF receptors. J Neurosci 2007; 27: 1836–1852.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Kalluri HS, Dempsey RJ . Growth factors, stem cells, and stroke. Neurosurg Focus 2008; 24: E14.

    PubMed  Google Scholar 

  72. Reuss B, von Bohlen und Halbach O . Fibroblast growth factors and their receptors in the central nervous system. Cell Tissue Res 2003; 313: 139–157.

    CAS  PubMed  Google Scholar 

  73. Gaughran F, Payne J, Sedgwick PM, Cotter D, Berry M . Hippocampal FGF-2 and FGFR1 mRNA expression in major depression, schizophrenia and bipolar disorder. Brain Res Bull 2006; 70: 221–227.

    CAS  PubMed  Google Scholar 

  74. Evans SJ, Choudary PV, Neal CR, Li JZ, Vawter MP, Tomita H et al. Dysregulation of the fibroblast growth factor system in major depression. Proc Natl Acad Sci USA 2004; 101: 15506–15511.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Aonurm-Helm A, Jurgenson M, Zharkovsky T, Sonn K, Berezin V, Bock E et al. Depression-like behaviour in neural cell adhesion molecule (NCAM)-deficient mice and its reversal by an NCAM-derived peptide, FGL. Eur J Neurosci 2008; 28: 1618–1628.

    PubMed  Google Scholar 

  76. Turner CA, Calvo N, Frost DO, Akil H, Watson SJ . The fibroblast growth factor system is downregulated following social defeat. Neurosci Lett 2008; 430: 147–150.

    CAS  PubMed  Google Scholar 

  77. Turner CA, Gula EL, Taylor LP, Watson SJ, Akil H . Antidepressant-like effects of intracerebroventricular FGF2 in rats. Brain Res 2008; 1224: 63–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Jacobs BL, Praag H, Gage FH . Adult brain neurogenesis and psychiatry: a novel theory of depression. Mol Psychiatry 2000; 5: 262–269.

    CAS  PubMed  Google Scholar 

  79. Eisch AJ, Cameron HA, Encinas JM, Meltzer LA, Ming GL, Overstreet-Wadiche LS . Adult neurogenesis, mental health, and mental illness: hope or hype? J Neurosci 2008; 28: 11785–11791.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Balu DT, Lucki I . Adult hippocampal neurogenesis: regulation, functional implications, and contribution to disease pathology. Neurosci Biobehav Rev 2009; 33: 232–252.

    PubMed  Google Scholar 

  81. Sahay A, Drew MR, Hen R . Dentate gyrus neurogenesis and depression. In: Scharfman HE (ed). Progress in Brain Research). The Dentate Gyrus: A Comprehensive Guide to Structure, Function, and Clinical Implications, 163 edn. Elsevier: Amsterdam, 2007, pp 697–722, 822.

    Google Scholar 

Download references

Acknowledgements

We thank Dr Albert Pinhasov, Department of Molecular Biology, Ariel University Center of Samaria for his helpful comments and Mrs Esther Furman for editing this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Turgeman.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tfilin, M., Sudai, E., Merenlender, A. et al. Mesenchymal stem cells increase hippocampal neurogenesis and counteract depressive-like behavior. Mol Psychiatry 15, 1164–1175 (2010). https://doi.org/10.1038/mp.2009.110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2009.110

Keywords

This article is cited by

Search

Quick links