Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Mesenchymal stromal cells in the antimicrobial host response of hematopoietic stem cell recipients with graft-versus-host disease—friends or foes?

Abstract

Mesenchymal stromal cells (MSCs) are multipotent cells, which exhibit broad immunosuppressive activities. Moreover, they may be administered irrespectively of human leukocyte antigen (HLA) compatibility, without inducing life-threatening immunological reactions, as they express no HLA class II and limited HLA class I antigens under resting conditions. These characteristics have made MSC an appealing candidate for cell therapy after hematopoietic stem cell transplantation (HSCT), for example, for treatment of graft-versus-host disease (GvHD) or for graft rejection prevention/treatment in allogeneic HSCT recipients. Unfortunately, information regarding the effect of MSC infusion on the host response to infectious agents is scarce, and study results on infectious complications in patients receiving MSC are conflicting. The present review focuses on the available data from in vitro studies and animal models regarding the interaction of MSC with bacterial, viral and fungal pathogens. In a clinical part, we present the current information on infectious complications in allogeneic HSCT recipients who had received MSCs as prophylaxis or treatment of GvHD disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Krampera M . Mesenchymal stromal cell 'licensing': a multistep process. Leukemia 2011; 25: 1408–1414.

    Article  CAS  PubMed  Google Scholar 

  2. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8: 315–317.

    Article  CAS  PubMed  Google Scholar 

  3. Carlo-Stella C, Di Nicola M, Gianni MA . [Mesenchymal stem cells: biology and clinical applications]. Tumori 2002; 88: A4–A7.

    PubMed  Google Scholar 

  4. Aggarwal S, Pittenger MF . Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105: 1815–1822.

    Article  CAS  PubMed  Google Scholar 

  5. Ramasamy R, Tong CK, Seow HF, Vidyadaran S, Dazzi F . The immunosuppressive effects of human bone marrow-derived mesenchymal stem cells target T cell proliferation but not its effector function. Cell Immunol 2008; 251: 131–136.

    Article  CAS  PubMed  Google Scholar 

  6. Uccelli A, Moretta L, Pistoia V . Mesenchymal stem cells in health and disease. Nat Rev Immunol 2008; 8: 726–736.

    Article  CAS  PubMed  Google Scholar 

  7. Bernardo ME, Fibbe WE . Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell 2013; 13: 392–402.

    Article  CAS  PubMed  Google Scholar 

  8. Krampera M, Cosmi L, Angeli R, Pasini A, Liotta F, Andreini A et al. Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells 2006; 24: 386–398.

    Article  CAS  PubMed  Google Scholar 

  9. Krampera M, Sartoris S, Liotta F, Pasini A, Angeli R, Cosmi L et al. Immune regulation by mesenchymal stem cells derived from adult spleen and thymus. Stem Cells Dev 2007; 16: 797–810.

    Article  CAS  PubMed  Google Scholar 

  10. Groh ME, Maitra B, Szekely E, Koc ON . Human mesenchymal stem cells require monocyte-mediated activation to suppress alloreactive T cells. Exp Hematol 2005; 33: 928–934.

    Article  CAS  PubMed  Google Scholar 

  11. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002; 99: 3838–3843.

    Article  CAS  PubMed  Google Scholar 

  12. Liu H, Kemeny DM, Heng BC, Ouyang HW, Melendez AJ, Cao T . The immunogenicity and immunomodulatory function of osteogenic cells differentiated from mesenchymal stem cells. J Immunol 2006; 176: 2864–2871.

    Article  CAS  PubMed  Google Scholar 

  13. Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC . Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 2003; 75: 389–397.

    Article  CAS  PubMed  Google Scholar 

  14. Meisel R, Zibert A, Laryea M, Gobel U, Daubener W, Dilloo D . Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 2004; 103: 4619–4621.

    Article  CAS  PubMed  Google Scholar 

  15. Xu G, Zhang Y, Zhang L, Ren G, Shi Y . The role of IL-6 in inhibition of lymphocyte apoptosis by mesenchymal stem cells. Biochem Biophys Res Commun 2007; 361: 745–750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Djouad F, Charbonnier LM, Bouffi C, Louis-Plence P, Bony C, Apparailly F et al. Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem Cells 2007; 25: 2025–2032.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang W, Ge W, Li C, You S, Liao L, Han Q et al. Effects of mesenchymal stem cells on differentiation, maturation, and function of human monocyte-derived dendritic cells. Stem Cells Dev 2004; 13: 263–271.

    Article  CAS  PubMed  Google Scholar 

  18. Jiang XX, Zhang Y, Liu B, Zhang SX, Wu Y, Yu XD et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 2005; 105: 4120–4126.

    Article  CAS  PubMed  Google Scholar 

  19. Deans RJ, Moseley AB . Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol 2000; 28: 875–884.

    Article  CAS  PubMed  Google Scholar 

  20. Horwitz EM, Gordon PL, Koo WK, Marx JC, Neel MD, McNall RY et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci USA 2002; 99: 8932–8937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD . Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 2002; 105: 93–98.

    Article  PubMed  Google Scholar 

  22. McNiece I, Harrington J, Turney J, Kellner J, Shpall EJ . Ex vivo expansion of cord blood mononuclear cells on mesenchymal stem cells. Cytotherapy 2004; 6: 311–317.

    Article  CAS  PubMed  Google Scholar 

  23. Robinson SN, Ng J, Niu T, Yang H, McMannis JD, Karandish S et al. Superior ex vivo cord blood expansion following co-culture with bone marrow-derived mesenchymal stem cells. Bone Marrow Transplant 2006; 37: 359–366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Erices A, Conget P, Minguell JJ . Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 2000; 109: 235–242.

    Article  CAS  PubMed  Google Scholar 

  25. Romanov YA, Svintsitskaya VA, Smirnov VN . Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells 2003; 21: 105–110.

    Article  PubMed  Google Scholar 

  26. Majore I, Moretti P, Stahl F, Hass R, Kasper C . Growth and differentiation properties of mesenchymal stromal cell populations derived from whole human umbilical cord. Stem Cell Rev 2011; 7: 17–31.

    Article  Google Scholar 

  27. Fukuchi Y, Nakajima H, Sugiyama D, Hirose I, Kitamura T, Tsuji K . Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells 2004; 22: 649–658.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Y, Li CD, Jiang XX, Li HL, Tang PH, Mao N . Comparison of mesenchymal stem cells from human placenta and bone marrow. Chin Med J (Engl) 2004; 117: 882–887.

    CAS  Google Scholar 

  29. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002; 13: 4279–4295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Najar M, Raicevic G, Boufker HI, Fayyad-Kazan H, De Bruyn C, Meuleman N et al. Adipose-tissue-derived and Wharton's jelly-derived mesenchymal stromal cells suppress lymphocyte responses by secreting leukemia inhibitory factor. Tissue Eng Part A 2010; 16: 3537–3546.

    Article  CAS  PubMed  Google Scholar 

  31. Schmitt A, van Griensven M, Imhoff AB, Buchmann S . Application of stem cells in orthopedics. Stem Cells Int 2012; 2012: 394962.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Wernicke CM, Grunewald TG, Juenger H, Kuci S, Kuci Z, Koehl U et al. Mesenchymal stromal cells for treatment of steroid-refractory GvHD: a review of the literature and two pediatric cases. Int Arch Med 2011; 4: 27.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cashman TJ, Gouon-Evans V, Costa KD . Mesenchymal stem cells for cardiac therapy: practical challenges and potential mechanisms. Stem Cell Rev 2013; 9: 254–265.

    Article  CAS  PubMed Central  Google Scholar 

  34. Khosrotehrani K . Mesenchymal stem cell therapy in skin: why and what for? Exp Dermatol 2013; 22: 307–310.

    Article  PubMed  Google Scholar 

  35. Uccelli A, Laroni A, Freedman MS . Mesenchymal stem cells for the treatment of multiple sclerosis and other neurological diseases. Lancet Neurol 2011; 10: 649–656.

    Article  CAS  PubMed  Google Scholar 

  36. Dalal J, Gandy K, Domen J . Role of mesenchymal stem cell therapy in Crohn's disease. Pediatr Res 2012; 71: 445–451.

    Article  CAS  PubMed  Google Scholar 

  37. Carrion FA, Figueroa FE . Mesenchymal stem cells for the treatment of systemic lupus erythematosus: is the cure for connective tissue diseases within connective tissue? Stem Cell Res Ther 2011; 2: 23.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mabed M, Shahin M . Mesenchymal stem cell-based therapy for the treatment of type 1 diabetes mellitus. Curr Stem Cell Res Ther 2012; 7: 179–190.

    Article  CAS  PubMed  Google Scholar 

  39. Baron F, Storb R . Mesenchymal stromal cells: a new tool against graft-versus-host disease? Biol Blood Marrow Transplant 2012; 18: 822–840.

    Article  PubMed  Google Scholar 

  40. Kim EJ, Kim N, Cho SG . The potential use of mesenchymal stem cells in hematopoietic stem cell transplantation. Exp Mol Med 2013; 45: e2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Nauta AJ, Fibbe WE . Immunomodulatory properties of mesenchymal stromal cells. Blood 2007; 110: 3499–3506.

    Article  CAS  PubMed  Google Scholar 

  42. Krasnodembskaya A, Song Y, Fang X, Gupta N, Serikov V, Lee JW et al. Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells 2010; 28: 2229–2238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Meisel R, Brockers S, Heseler K, Degistirici O, Bulle H, Woite C et al. Human but not murine multipotent mesenchymal stromal cells exhibit broad-spectrum antimicrobial effector function mediated by indoleamine 2,3-dioxygenase. Leukemia 2011; 25: 648–654.

    Article  CAS  PubMed  Google Scholar 

  44. Vandamme D, Landuyt B, Luyten W, Schoofs L . A comprehensive summary of LL-37, the factotum human cathelicidin peptide. Cell Immunol 2012; 280: 22–35.

    Article  CAS  PubMed  Google Scholar 

  45. Lopez-Garcia B, Lee PH, Yamasaki K, Gallo RL . Anti-fungal activity of cathelicidins and their potential role in Candida albicans skin infection. J Invest Dermatol 2005; 125: 108–115.

    Article  CAS  PubMed  Google Scholar 

  46. Wong JH, Ng TB, Legowska A, Rolka K, Hui M, Cho CH . Antifungal action of human cathelicidin fragment (LL13-37) on Candida albicans. Peptides 2011; 32: 1996–2002.

    Article  CAS  PubMed  Google Scholar 

  47. Gupta N, Krasnodembskaya A, Kapetanaki M, Mouded M, Tan X, Serikov V et al. Mesenchymal stem cells enhance survival and bacterial clearance in murine Escherichia coli pneumonia. Thorax 2012; 67: 533–539.

    Article  PubMed  Google Scholar 

  48. Mei SH, Haitsma JJ, Dos Santos CC, Deng Y, Lai PF, Slutsky AS et al. Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis. Am J Respir Crit Care Med 2010; 182: 1047–1057.

    Article  CAS  PubMed  Google Scholar 

  49. Hall SR, Tsoyi K, Ith B, Padera RF Jr, Lederer JA, Wang Z et al. Mesenchymal stromal cells improve survival during sepsis in the absence of heme oxygenase-1: the importance of neutrophils. Stem Cells 2013; 31: 397–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gorbunov NV, Garrison BR, Zhai M, McDaniel DP, Ledney GD, Elliott TB et al. Autophagy-mediated defense response of mouse mesenchymal stromal cells (MSCs) to challenge with escherichia coli. In: Cai DJ, (ed). Protein Interactions: InTech, Open acces publisher: Rijeka, Croatia 2012.

    Google Scholar 

  51. Karlsson H, Samarasinghe S, Ball LM, Sundberg B, Lankester AC, Dazzi F et al. Mesenchymal stem cells exert differential effects on alloantigen and virus-specific T-cell responses. Blood 2008; 112: 532–541.

    Article  CAS  PubMed  Google Scholar 

  52. Yang R, Liu Y, Kelk P, Qu C, Akiyama K, Chen C et al. A subset of IL-17(+) mesenchymal stem cells possesses anti-Candida albicans effect. Cell Res 2013; 23: 107–121.

    Article  CAS  PubMed  Google Scholar 

  53. Nemeth K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 2009; 15: 42–49.

    Article  CAS  PubMed  Google Scholar 

  54. Kim J, Hematti P . Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol 2009; 37: 1445–1453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Maqbool M, Vidyadaran S, George E, Ramasamy R . Human mesenchymal stem cells protect neutrophils from serum-deprived cell death. Cell Biol Int 2011; 35: 1247–1251.

    Article  CAS  PubMed  Google Scholar 

  56. Cassatella MA, Mosna F, Micheletti A, Lisi V, Tamassia N, Cont C et al. Toll-like receptor-3-activated human mesenchymal stromal cells significantly prolong the survival and function of neutrophils. Stem Cells 2011; 29: 1001–1011.

    Article  CAS  PubMed  Google Scholar 

  57. Raffaghello L, Bianchi G, Bertolotto M, Montecucco F, Busca A, Dallegri F et al. Human mesenchymal stem cells inhibit neutrophil apoptosis: a model for neutrophil preservation in the bone marrow niche. Stem Cells 2008; 26: 151–162.

    Article  CAS  PubMed  Google Scholar 

  58. Gonzalez-Rey E, Anderson P, Gonzalez MA, Rico L, Buscher D, Delgado M . Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis. Gut 2009; 58: 929–939.

    Article  CAS  PubMed  Google Scholar 

  59. Kim ES, Chang YS, Choi SJ, Kim JK, Yoo HS, Ahn SY et al. Intratracheal transplantation of human umbilical cord blood-derived mesenchymal stem cells attenuates Escherichia coli-induced acute lung injury in mice. Respir Res 2011; 12: 108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Krasnodembskaya A, Samarani G, Song Y, Zhuo H, Su X, Lee JW et al. Human mesenchymal stem cells reduce mortality and bacteremia in gram-negative sepsis in mice in part by enhancing the phagocytic activity of blood monocytes. Am J Physiol Lung Cell Mol Physiol 2012; 302: L1003–L1013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Romani L . Immunity to fungal infections. Nat Rev Immunol 2011; 11: 275–288.

    Article  CAS  PubMed  Google Scholar 

  62. Lehrnbecher T, Kalkum M, Champer J, Tramsen L, Schmidt S, Klingebiel T . Immunotherapy in invasive fungal infection—focus on invasive aspergillosis. Curr Pharm Des 2013; 19: 3689–3712.

    Article  CAS  PubMed  Google Scholar 

  63. Le Blanc K, Rasmusson I, Sundberg B, Gotherstrom C, Hassan M, Uzunel M et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 2004; 363: 1439–1441.

    Article  PubMed  Google Scholar 

  64. Galipeau J . The mesenchymal stromal cells dilemma—does a negative phase III trial of random donor mesenchymal stromal cells in steroid-resistant graft-versus-host disease represent a death knell or a bump in the road? Cytotherapy 2013; 15: 2–8.

    Article  PubMed  Google Scholar 

  65. Le Blanc K, Samuelsson H, Gustafsson B, Remberger M, Sundberg B, Arvidson J et al. Transplantation of mesenchymal stem cells to enhance engraftment of hematopoietic stem cells. Leukemia 2007; 21: 1733–1738.

    Article  CAS  PubMed  Google Scholar 

  66. Lee ST, Jang JH, Cheong JW, Kim JS, Maemg HY, Hahn JS et al. Treatment of high-risk acute myelogenous leukaemia by myeloablative chemoradiotherapy followed by co-infusion of T cell-depleted haematopoietic stem cells and culture-expanded marrow mesenchymal stem cells from a related donor with one fully mismatched human leucocyte antigen haplotype. Br J Haematol 2002; 118: 1128–1131.

    Article  PubMed  Google Scholar 

  67. Gonzalo-Daganzo R, Regidor C, Martin-Donaire T, Rico MA, Bautista G, Krsnik I et al. Results of a pilot study on the use of third-party donor mesenchymal stromal cells in cord blood transplantation in adults. Cytotherapy 2009; 11: 278–288.

    Article  CAS  PubMed  Google Scholar 

  68. Bernardo ME, Ball LM, Cometa AM, Roelofs H, Zecca M, Avanzini MA et al. Co-infusion of ex vivo-expanded, parental MSCs prevents life-threatening acute GVHD, but does not reduce the risk of graft failure in pediatric patients undergoing allogeneic umbilical cord blood transplantation. Bone Marrow Transplant 2011; 46: 200–207.

    Article  CAS  PubMed  Google Scholar 

  69. Ning H, Yang F, Jiang M, Hu L, Feng K, Zhang J et al. The correlation between cotransplantation of mesenchymal stem cells and higher recurrence rate in hematologic malignancy patients: outcome of a pilot clinical study. Leukemia 2008; 22: 593–599.

    Article  CAS  PubMed  Google Scholar 

  70. Baron F, Lechanteur C, Willems E, Bruck F, Baudoux E, Seidel L et al. Cotransplantation of mesenchymal stem cells might prevent death from graft-versus-host disease (GVHD) without abrogating graft-versus-tumor effects after HLA-mismatched allogeneic transplantation following nonmyeloablative conditioning. Biol Blood Marrow Transplant 2010; 16: 838–847.

    Article  PubMed  Google Scholar 

  71. Ball LM, Bernardo ME, Roelofs H, Lankester A, Cometa A, Egeler RM et al. Cotransplantation of ex vivo expanded mesenchymal stem cells accelerates lymphocyte recovery and may reduce the risk of graft failure in haploidentical hematopoietic stem-cell transplantation. Blood 2007; 110: 2764–2767.

    Article  CAS  PubMed  Google Scholar 

  72. Pavletic SZ, Fowler DH . Are we making progress in GVHD prophylaxis and treatment? Hematology Am Soc Hematol Educ Program 2012; 2012: 251–264.

    Article  PubMed  Google Scholar 

  73. Deeg HJ . How I treat refractory acute GVHD. Blood 2007; 109: 4119–4126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dander E, Lucchini G, Vinci P, Introna M, Masciocchi F, Perseghin P et al. Mesenchymal stromal cells for the treatment of graft-versus-host disease: understanding the in vivo biological effect through patient immune monitoring. Leukemia 2012; 26: 1681–1684.

    Article  CAS  PubMed  Google Scholar 

  75. Kebriaei P, Isola L, Bahceci E, Holland K, Rowley S, McGuirk J et al. Adult human mesenchymal stem cells added to corticosteroid therapy for the treatment of acute graft-versus-host disease. Biol Blood Marrow Transplant 2009; 15: 804–811.

    Article  CAS  PubMed  Google Scholar 

  76. Martin PJ, Uberti JP, Soiffer RJ, Klingemann H, Waller EK, Daly AS, Herrmann RP et al. Prochymal improves response rates in patients with steroid-refractory acute graft versus host disease (SR-GVHD) involving the liver and gut: results of a randomized, placebo-controlled, multicenter phase III trial in GVHD. Biol Blood Marrow Transplant 2010; 16: S169–S170.

    Article  Google Scholar 

  77. Forslow U, Blennow O, LeBlanc K, Ringden O, Gustafsson B, Mattsson J et al. Treatment with mesenchymal stromal cells is a risk factor for pneumonia-related death after allogeneic hematopoietic stem cell transplantation. Eur J Haematol 2012; 89: 220–227.

    Article  PubMed  CAS  Google Scholar 

  78. von Bahr L, Sundberg B, Lonnies L, Sander B, Karbach H, Hagglund H et al. Long-term complications, immunologic effects, and role of passage for outcome in mesenchymal stromal cell therapy. Biol Blood Marrow Transplant 2012; 18: 557–564.

    Article  PubMed  Google Scholar 

  79. Remberger M, Ringden O . Treatment of severe acute graft-versus-host disease with mesenchymal stromal cells: a comparison with non-MSC treated patients. Int J Hematol 2012; 96: 822–824.

    Article  PubMed  Google Scholar 

  80. Kurtzberg J, Prockop S, Teira P, Bittencourt H, Lewis V, Chan KW et al. Allogeneic human mesenchymal stem cell therapy (Remestemcel-L, Prochymal) as a rescue agent for severe refractory acute graft-versus-host disease in pediatric patients. Biol Blood Marrow Transplant 2013; 20: 229–235.

    Article  PubMed  Google Scholar 

  81. Fang B, Song Y, Liao L, Zhang Y, Zhao RC . Favorable response to human adipose tissue-derived mesenchymal stem cells in steroid-refractory acute graft-versus-host disease. Transplant Proc 2007; 39: 3358–3362.

    Article  CAS  PubMed  Google Scholar 

  82. Strioga M, Viswanathan S, Darinskas A, Slaby O, Michalek J . Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev 2012; 21: 2724–2752.

    Article  CAS  PubMed  Google Scholar 

  83. Lucchini G, Dander E, Pavan F, Di Ceglie I, Balduzzi A, Perseghin P et al. Mesenchymal stromal cells do not increase the risk of viral reactivation nor the severity of viral events in recipients of allogeneic stem cell transplantation. Stem Cells Int 2012; 2012: 690236.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Prasad VK, Lucas KG, Kleiner GI, Talano JA, Jacobsohn D, Broadwater G et al. Efficacy and safety of ex vivo cultured adult human mesenchymal stem cells (Prochymal) in pediatric patients with severe refractory acute graft-versus-host disease in a compassionate use study. Biol Blood Marrow Transplant 2011; 17: 534–541.

    Article  CAS  PubMed  Google Scholar 

  85. Weng JY, Du X, Geng SX, Peng YW, Wang Z, Lu ZS et al. Mesenchymal stem cell as salvage treatment for refractory chronic GVHD. Bone Marrow Transplant 2010; 45: 1732–1740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

AB was supported by the European Social Fund POSDRU/107/1.5/S/78702.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Lehrnbecher.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balan, A., Lucchini, G., Schmidt, S. et al. Mesenchymal stromal cells in the antimicrobial host response of hematopoietic stem cell recipients with graft-versus-host disease—friends or foes?. Leukemia 28, 1941–1948 (2014). https://doi.org/10.1038/leu.2014.127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.127

This article is cited by

Search

Quick links