Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Concise Review
  • Published:

EZH2 in normal and malignant hematopoiesis

Abstract

The histone methyltransferase Enhancer of Zeste Homologue 2 (EZH2), a component of the polycomb group complex, is vital for stem cell development, including hematopoiesis. Its primary function, to deposit the histone mark H3K27me3, promotes transcriptional repression. The activity of EZH2 influences cell fate regulation, namely the balance between self-renewal and differentiation. The contribution of aberrant EZH2 expression to tumorigenesis by directing cells toward a cancer stem cell (CSC) state is increasingly recognized. However, its role in hematological malignancies is complex. Point mutations, resulting in gain-of-function, and inactivating mutations, reported in lymphoma and leukemia, respectively, suggest that EZH2 may serve a dual purpose as an oncogene and tumor-suppressor gene. The reduction of CSC self-renewal via EZH2 inhibition offers a potentially attractive therapeutic approach to counter the aberrant activation found in lymphoma and leukemia. The discovery of small molecules that specifically inhibit EZH2 raises the exciting possibility of exploiting the oncogenic addiction of tumor cells toward this protein. However, interference with the tumor-suppressor role of wild-type EZH2 must be avoided. This review examines the role of EZH2 in normal and malignant hematopoiesis and recent developments in harnessing the therapeutic potential of EZH2 inhibition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Strahl BD, Allis CD . The language of covalent histone modifications. Nature 2000; 403: 41–45.

    Article  CAS  PubMed  Google Scholar 

  2. Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 2002; 298: 1039–1043.

    Article  CAS  PubMed  Google Scholar 

  3. Zhou J, Bi C, Cheong LL, Mahara S, Liu SC, Tay KG et al. The histone methyltransferase inhibitor, DZNep, up-regulates TXNIP, increases ROS production, and targets leukemia cells in AML. Blood 2011; 118: 2830–2839.

    Article  PubMed  Google Scholar 

  4. Miranda TB, Cortez CC, Yoo CB, Liang G, Abe M, Kelly TK et al. DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation. Mol Cancer Ther 2009; 8: 1579–1588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tan J, Yang X, Zhuang L, Jiang X, Chen W, Lee PL et al. Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev 2007; 21: 1050–1063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fiskus W, Wang Y, Sreekumar A, Buckley KM, Shi H, Jillella A et al. Combined epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A and the histone deacetylase inhibitor panobinostat against human AML cells. Blood 2009; 114: 2733–2743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Knutson SK, Wigle TJ, Warholic NM, Sneeringer CJ, Allain CJ, Klaus CR et al. A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nat Chem Biol 2012; 8: 890–896.

    Article  CAS  PubMed  Google Scholar 

  8. McCabe MT, Ott HM, Ganji G, Korenchuk S, Thompson C, Van Aller GS et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 2012; 492: 108–112.

    Article  CAS  PubMed  Google Scholar 

  9. Francis NJ, Kingston RE, Woodcock CL . Chromatin compaction by a polycomb group protein complex. Science 2004; 306: 1574–1577.

    Article  CAS  PubMed  Google Scholar 

  10. Vire E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature 2006; 439: 871–874.

    Article  CAS  PubMed  Google Scholar 

  11. Wang H, Wang L, Erdjument-Bromage H, Vidal M, Tempst P, Jones RS et al. Role of histone H2A ubiquitination in Polycomb silencing. Nature 2004; 431: 873–878.

    Article  CAS  PubMed  Google Scholar 

  12. Bracken AP, Dietrich N, Pasini D, Hansen KH, Helin K . Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev 2006; 20: 1123–1136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chou RH, Yu YL, Hung MC . The roles of EZH2 in cell lineage commitment. Am J Transl Res 2011; 3: 243–250.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. de Haan G, Gerrits A . Epigenetic control of hematopoietic stem cell aging - The case of Ezh2. Ann NY Acad Sci 2007; 1106: 233–239.

    Article  CAS  PubMed  Google Scholar 

  15. Kamminga LM, Bystrykh LV, de Boer A, Houwer S, Douma J, Weersing E et al. The Polycomb group gene Ezh2 prevents hematopoietic stem cell exhaustion. Blood 2006; 107: 2170–2179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ezhkova E, Pasolli HA, Parker JS, Stokes N, Su IH, Hannon G et al. Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells. Cell 2009; 136: 1122–1135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bracken AP, Pasini D, Capra M, Prosperini E, Colli E, Helin K . EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. Embo J 2003; 22: 5323–5335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bonnet D, Dick JE . Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730–737.

    Article  CAS  PubMed  Google Scholar 

  19. Dolnik A, Engelmann JC, Scharfenberger-Schmeer M, Mauch J, Kelkenberg-Schade S, Haldemann B et al. Commonly altered genomic regions in acute myeloid leukemia are enriched for somatic mutations involved in chromatin remodeling and splicing. Blood 2012; 120: e83–e92.

    Article  CAS  PubMed  Google Scholar 

  20. Khan SN, Jankowska AM, Mahfouz R, Dunbar AJ, Sugimoto Y, Hosono N et al. Multiple mechanisms deregulate EZH2 and histone H3 lysine 27 epigenetic changes in myeloid malignancies. Leukemia 2013; 27: 1301–1309.

    Article  CAS  PubMed  Google Scholar 

  21. Thiel AT, Feng Z, Pant DK, Chodosh LA, Hua X . The trithorax protein partner menin acts in tandem with EZH2 to suppress C/EBPalpha and differentiation in MLL-AF9 leukemia. Haematologica 2013; 98: 918–927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Velichutina I, Shaknovich R, Geng H, Johnson NA, Gascoyne RD, Melnick AM et al. EZH2-mediated epigenetic silencing in germinal center B cells contributes to proliferation and lymphomagenesis. Blood 2010; 116: 5247–5255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. van Vlerken LE, Kiefer CM, Morehouse C, Li Y, Groves C, Wilson SD et al. EZH2 is required for breast and pancreatic cancer stem cell maintenance and can be used as a functional cancer stem cell reporter. Stem Cells Transl Med 2013; 2: 43–52.

    Article  CAS  PubMed  Google Scholar 

  24. Widschwendter M, Fiegl H, Egle D, Mueller-Holzner E, Spizzo G, Marth C et al. Epigenetic stem cell signature in cancer. Nat Genet 2007; 39: 157–158.

    Article  CAS  PubMed  Google Scholar 

  25. Schlesinger Y, Straussman R, Keshet I, Farkash S, Hecht M, Zimmerman J et al. Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet 2007; 39: 232–236.

    Article  CAS  PubMed  Google Scholar 

  26. Ohm JE, McGarvey KM, Yu X, Cheng L, Schuebel KE, Cope L et al. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 2007; 39: 237–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. O'Hagan HM, Wang W, Sen S, Destefano Shields C, Lee SS, Zhang YW et al. Oxidative damage targets complexes containing DNA methyltransferases, SIRT1, and polycomb members to promoter CpG Islands. Cancer Cell 2011; 20: 606–619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kaur M, Cole MD . MYC acts via the PTEN tumor suppressor to elicit autoregulation and genome-wide gene repression by activation of the Ezh2 methyltransferase. Cancer Res 2013; 73: 695–705.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang X, Zhao X, Fiskus W, Lin J, Lwin T, Rao R et al. Coordinated silencing of MYC-mediated miR-29 by HDAC3 and EZH2 as a therapeutic target of histone modification in aggressive B-Cell lymphomas. Cancer Cell 2012; 22: 506–523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 2008; 322: 1695–1699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guo Y, Ying L, Tian Y, Yang P, Zhu Y, Wang Z et al. miR-144 downregulation increases bladder cancer cell proliferation by targeting EZH2 and regulating Wnt signaling. FEBS J 2013; 280: 4531–4538.

    Article  CAS  PubMed  Google Scholar 

  32. Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 2002; 419: 624–629.

    Article  CAS  PubMed  Google Scholar 

  33. Kleer CG, Cao Q, Varambally S, Shen RL, Ota L, Tomlins SA et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci USA 2003; 100: 11606–11611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ren G, Baritaki S, Marathe H, Feng J, Park S, Beach S et al. Polycomb protein EZH2 regulates tumor invasion via the transcriptional repression of the metastasis suppressor RKIP in breast and prostate cancer. Cancer Res 2012; 72: 3091–3104.

    Article  CAS  PubMed  Google Scholar 

  35. Raaphorst FM, van Kemenade FJ, Blokzijl T, Fieret E, Hamer KM, Satijn DP et al. Coexpression of BMI-1 and EZH2 polycomb group genes in Reed-Sternberg cells of Hodgkin's disease. Am J Pathol 2000; 157: 709–715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Visser HP, Gunster MJ, Kluin-Nelemans HC, Manders EM, Raaphorst FM, Meijer CJ et al. The Polycomb group protein EZH2 is upregulated in proliferating, cultured human mantle cell lymphoma. Br J Haematol 2001; 112: 950–958.

    Article  CAS  PubMed  Google Scholar 

  37. Morin RD, Johnson NA, Severson TM, Mungall AJ, An J, Goya R et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet 2010; 42: 181–185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sasaki D, Imaizumi Y, Hasegawa H, Osaka A, Tsukasaki K, Choi YL et al. Overexpression of Enhancer of zeste homolog 2 with trimethylation of lysine 27 on histone H3 in adult T-cell leukemia/lymphoma as a target for epigenetic therapy. Haematologica 2011; 96: 712–719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sneeringer CJ, Scott MP, Kuntz KW, Knutson SK, Pollock RM, Richon VM et al. Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. Proc Natl Acad Sci USA 2010; 107: 20980–20985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Beguelin W, Popovic R, Teater M, Jiang Y, Bunting KL, Rosen M et al. EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation. Cancer Cell 2013; 23: 677–692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Grubach L, Juhl-Christensen C, Rethmeier A, Olesen LH, Aggerholm A, Hokland P et al. Gene expression profiling of Polycomb, Hox and Meis genes in patients with acute myeloid leukaemia. Eur J Haematol 2008; 81: 112–122.

    Article  CAS  PubMed  Google Scholar 

  42. Xu F, Li X, Wu L, Zhang Q, Yang R, Yang Y et al. Overexpression of the EZH2, RING1 and BMI1 genes is common in myelodysplastic syndromes: relation to adverse epigenetic alteration and poor prognostic scoring. Ann Hematol 2011; 90: 643–653.

    Article  CAS  PubMed  Google Scholar 

  43. Herrera-Merchan A, Arranz L, Ligos JM, de Molina A, Dominguez O, Gonzalez S . Ectopic expression of the histone methyltransferase Ezh2 in haematopoietic stem cells causes myeloproliferative disease. Nat Commun 2012; 3: 623.

    Article  CAS  PubMed  Google Scholar 

  44. Tanaka S, Miyagi S, Sashida G, Chiba T, Yuan J, Mochizuki-Kashio M et al. Ezh2 augments leukemogenecity by reinforcing differentiation blockage in acute myeloid leukemia. Blood 2012; 120: 1107–1117.

    Article  CAS  PubMed  Google Scholar 

  45. Abdel-Wahab O, Adli M, LaFave LM, Gao J, Hricik T, Shih AH et al. ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression. Cancer Cell 2012; 22: 180–193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ernst T, Chase AJ, Score J, Hidalgo-Curtis CE, Bryant C, Jones AV et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet 2010; 42: 722–726.

    Article  CAS  PubMed  Google Scholar 

  47. Nikoloski G, Langemeijer SM, Kuiper RP, Knops R, Massop M, Tonnissen ER et al. Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat Genet 2010; 42: 665–667.

    Article  CAS  PubMed  Google Scholar 

  48. Guglielmelli P, Biamonte F, Score J, Hidalgo-Curtis C, Cervantes F, Maffioli M et al. EZH2 mutational status predicts poor survival in myelofibrosis. Blood 2011; 118: 5227–5234.

    Article  CAS  PubMed  Google Scholar 

  49. Ntziachristos P, Tsirigos A, Van Vlierberghe P, Nedjic J, Trimarchi T, Flaherty MS et al. Genetic inactivation of the polycomb repressive complex 2 in T cell acute lymphoblastic leukemia. Nat Med 2012; 18: 298–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Simon C, Chagraoui J, Krosl J, Gendron P, Wilhelm B, Lemieux S et al. A key role for EZH2 and associated genes in mouse and human adult T-cell acute leukemia. Genes Dev 2012; 26: 651–656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mochizuki-Kashio M, Mishima Y, Miyagi S, Negishi M, Saraya A, Konuma T et al. Dependency on the polycomb gene Ezh2 distinguishes fetal from adult hematopoietic stem cells. Blood 2011; 118: 6553–6561.

    Article  CAS  PubMed  Google Scholar 

  52. Gore SD, Baylin S, Sugar E, Carraway H, Miller CB, Carducci M et al. Combined DNA methyltransferase and histone deacetylase inhibition in the treatment of myeloid neoplasms. Cancer Res 2006; 66: 6361–6369.

    Article  CAS  PubMed  Google Scholar 

  53. He S, Wang J, Kato K, Xie F, Varambally S, Mineishi S et al. Inhibition of histone methylation arrests ongoing graft-versus-host disease in mice by selectively inducing apoptosis of alloreactive effector T cells. Blood 2012; 119: 1274–1282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhao X, Lwin T, Zhang X, Huang A, Wang J, Marquez VE et al. Disruption of the MYC-miRNA-EZH2 loop to suppress aggressive B-cell lymphoma survival and clonogenicity. Leukemia 2013; e-pub 29 March 2013 doi:10.1038/leu.2013.94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Qi W, Chan H, Teng L, Li L, Chuai S, Zhang R et al. Selective inhibition of Ezh2 by a small molecule inhibitor blocks tumor cells proliferation. Proc Natl Acad Sci USA 2012; 109 (): 21360–21365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ryan RJ, Nitta M, Borger D, Zukerberg LR, Ferry JA, Harris NL et al. EZH2 codon 641 mutations are common in BCL2-rearranged germinal center B cell lymphomas. PLoS One 2011; 6: e28585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhou L, Ruvolo VR, McQueen T, Chen W, Samudio IJ, Conneely O et al. HDAC inhibition by SNDX-275 (Entinostat) restores expression of silenced leukemia-associated transcription factors Nur77 and Nor1 and of key pro-apoptotic proteins in AML. Leukemia 2013; 27: 1358–1368.

    Article  CAS  PubMed  Google Scholar 

  58. Horton SJ, Huntly BJ . Recent advances in acute myeloid leukemia stem cell biology. Haematologica 2012; 97: 966–974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ozbalak M, Cetiner M, Bekoz H, Atesoglu EB, Ar C, Salihoglu A et al. Azacitidine has limited activity in 'real life' patients with MDS and AML: a single centre experience. Hematol Oncol 2012; 30: 76–81.

    Article  CAS  PubMed  Google Scholar 

  60. Craddock C, Quek L, Goardon N, Freeman S, Siddique S, Raghavan M et al. Azacitidine fails to eradicate leukemic stem/progenitor cell populations in patients with acute myeloid leukemia and myelodysplasia. Leukemia 2013; 27: 1028–1036.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

MC is supported by the Scottish Funding Council (SCD/04) and Leukaemia and Lymphoma Research (Grant ref: 11017). PA is supported by Cancer Research UK (Grant ref: C10652/A10250). We thank Professor Tessa Holyoake for critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Copland.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Author Contributions

KL wrote and revised the manuscript. MC and PA revised the manuscript. All authors checked the final version.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lund, K., Adams, P. & Copland, M. EZH2 in normal and malignant hematopoiesis. Leukemia 28, 44–49 (2014). https://doi.org/10.1038/leu.2013.288

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.288

Keywords

This article is cited by

Search

Quick links