Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Leukemia-associated antigens and their relevance to the immunotherapy of acute myeloid leukemia

Abstract

The graft-versus-leukemia effect of allogeneic hematopoietic stem cell transplantation (HSCT) has shown that the immune system is capable of eradicating acute myeloid leukemia (AML). This knowledge, along with the identification of the target antigens against which antileukemia immune responses are directed, has provided a strong impetus for the development of antigen-targeted immunotherapy of AML. The success of any antigen-specific immunotherapeutic strategy depends critically on the choice of target antigen. Ideal molecules for immune targeting in AML are those that are: (1) leukemia-specific; (2) expressed in most leukemic blasts including leukemic stem cells; (3) important for the leukemic phenotype; (4) immunogenic; and (5) clinically effective. In this review, we provide a comprehensive overview on AML-related tumor antigens and assess their applicability for immunotherapy against the five criteria outlined above. In this way, we aim to facilitate the selection of appropriate target antigens, a task that has become increasingly challenging given the large number of antigens identified and the rapid pace at which new targets are being discovered. The information provided in this review is intended to guide the rational design of future antigen-specific immunotherapy trials, which will hopefully lead to new antileukemia therapies with more selectivity and higher efficacy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Anguille S, Lion E, Smits E, Berneman ZN, Van Tendeloo VFI . Dendritic cell vaccine therapy for acute myeloid leukemia Questions and Answers. Hum Vaccines 2011; 7: 579–584.

    Article  CAS  Google Scholar 

  2. Anguille S, Lion E, Willemen Y, Van Tendeloo VF, Berneman ZN, Smits EL . Interferon-alpha in acute myeloid leukemia: an old drug revisited. Leukemia 2011; 25: 739–748.

    Article  CAS  PubMed  Google Scholar 

  3. Smits E, Berneman ZN, Van Tendeloo VFI . Immunotherapy of acute myeloid leukemia: current approaches. Oncologist 2009; 14: 240–252.

    Article  CAS  PubMed  Google Scholar 

  4. Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT et al. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 2009; 15: 5323–5337.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dasgupta B, Pinilla-Ibarz J, Roberts W, Moldenhauer A, Schwartz J, Rodriguez E et al. Generation of specific T cell immune responses to AML1/ETO in t(8;21) acute myeloid leukemia. Blood 2001; 98: 722A.

    Google Scholar 

  6. Makita M, Azuma T, Hamaguchi H, Niiya H, Kojima K, Fujita S et al. Leukemia-associated fusion proteins, dek-can and bcr-abl, represent immunogenic HLA-DR-restricted epitopes recognized by fusion peptide-specific CD4(+) T lymphocytes. Leukemia 2002; 16: 2400–2407.

    Article  CAS  PubMed  Google Scholar 

  7. Osman Y, Takahashi M, Zheng Z, Toba K, Liu A, Furukawa T et al. Dendritic cells stimulate the expansion of PML-RAR alpha specific cytotoxic T-lymphocytes: its applicability for antileukemia immunotherapy. J Exp Clin Cancer Res 1999; 18: 485–492.

    CAS  PubMed  Google Scholar 

  8. Gambacorti-Passerini C, Grignani F, Arienti F, Pandolfi PP, Pelicci PG, Parmiani G . Human CD4 lymphocytes specifically recognize a peptide representing the fusion region of the hybrid protein pml/RAR alpha present in acute promyelocytic leukemia cells. Blood 1993; 81: 1369–1375.

    Article  CAS  PubMed  Google Scholar 

  9. Grimwade D, Hills RK, Moorman AV, Walker H, Chatters S, Goldstone AH et al. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood 2010; 116: 354–365.

    Article  CAS  PubMed  Google Scholar 

  10. Scholl S, Salzmann S, Kaufmann AM, Hoffken K . Flt3-ITD mutations can generate leukaemia specific neoepitopes: potential role for immunotherapeutic approaches. Leuk Lymphoma 2006; 47: 307–312.

    Article  CAS  PubMed  Google Scholar 

  11. Graf C, Heidel F, Tenzer S, Radsak MP, Solem FK, Britten CM et al. A neoepitope generated by an FLT3 internal tandem duplication (FLT3-ITD) is recognized by leukemia-reactive autologous CD8+ T cells. Blood 2007; 109: 2985–2988.

    Article  CAS  PubMed  Google Scholar 

  12. Greiner J, Ono Y, Hofmann S, Schmitt A, Mehring E, Gotz M et al. Mutated regions of nucleophosmin 1 (NPM1) elicit both CD4+ and CD8+ T cell responses in patients with acute myeloid leukemia. Blood 2012; e-pub ahead of print 16 May 2012; doi: 10.1182/blood-2011-11-394395.

    Article  CAS  PubMed  Google Scholar 

  13. Lamers CH, Sleijfer S, Vulto AG, Kruit WH, Kliffen M, Debets R et al. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol 2006; 24: e20–e22.

    Article  PubMed  Google Scholar 

  14. Van Driessche A, Berneman ZN, Van Tendeloo VF . Active specific immunotherapy targeting the Wilms’ tumor protein 1 (WT1) for patients with hematological malignancies and solid tumors: lessons from early clinical trials. Oncologist 2012; 17: 250–259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang L, Han Y, Suarez Saiz F, Minden MD . A tumor suppressor and oncogene: the WT1 story. Leukemia 2007; 21: 868–876.

    Article  CAS  PubMed  Google Scholar 

  16. Sugiyama H . WT1 (Wilms’ Tumor Gene 1): biology and cancer immunotherapy. Jpn J Clin Oncol 2010; 40: 377–387.

    Article  PubMed  Google Scholar 

  17. Arai J, Yasukawa M, Ohminami H, Kakimoto M, Hasegawa A, Fujita S . Identification of human telomerase reverse transcriptase-derived peptides that induce HLA-A24-restricted antileukemia cytotoxic T lymphocytes. Blood 2001; 97: 2903–2907.

    Article  CAS  PubMed  Google Scholar 

  18. Schmidt SM, Schag K, Muller MR, Weck MM, Appel S, Kanz L et al. Survivin is a shared tumor-associated antigen expressed in a broad variety of malignancies and recognized by specific cytotoxic T cells. Blood 2003; 102: 571–576.

    Article  CAS  PubMed  Google Scholar 

  19. Leisegang M, Wilde S, Spranger S, Milosevic S, Frankenberger B, Uckert W et al. MHC-restricted fratricide of human lymphocytes expressing survivin-specific transgenic T cell receptors. J Clin Invest 2010; 120: 3869–3877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Snauwaert S, Vanhee S, Goetgeluk G, Verstichel G, Van Caeneghem Y, Velghe I et al. RHAMM/HMMR (CD168) is not an ideal target antigen for immunotherapy of acute myeloid leukemia. Haematologica 2012; e-pub ahead of print 24 April 2012 doi: 10.3324/haematol.2012.065581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Siegel S, Wagner A, Kabelitz D, Marget M, Coggin J, Barsoum A et al. Induction of cytotoxic T-cell responses against the oncofetal antigen-immature laminin receptor for the treatment of hematologic malignancies. Blood 2003; 102: 4416–4423.

    Article  CAS  PubMed  Google Scholar 

  22. Siegel S, Wagner A, Friedrichs B, Wendeler A, Wendel L, Kabelitz D et al. Identification of HLA-A*0201-presented T cell epitopes derived from the oncofetal antigen-immature laminin receptor protein in patients with hematological malignancies. J Immunol 2006; 176: 6935–6944.

    Article  CAS  PubMed  Google Scholar 

  23. Maeda M, Otsuka T, Kimura N, Kozu T, Fukuyama T, Uchida N et al. Induction of MTG8-specific cytotoxic T-cell lines: MTG8 is probably a tumour antigen that is recognized by cytotoxic T cells in AML1-MTG8-fused gene-positive acute myelogenous leukaemia. Br J Haematol 2000; 111: 570–579.

    CAS  PubMed  Google Scholar 

  24. Guinn BA, Bland EA, Lodi U, Liggins AP, Tobal K, Petters S et al. Humoral detection of leukaemia-associated antigens in presentation acute myeloid leukaemia. Biochem Biophys Res Commun 2005; 335: 1293–1304.

    Article  CAS  PubMed  Google Scholar 

  25. Greiner J, Schmitt M, Li L, Giannopoulos K, Bosch K, Schmitt A et al. Expression of tumor-associated antigens in acute myeloid leukemia: implications for specific immunotherapeutic approaches. Blood 2006; 108: 4109–4117.

    Article  CAS  PubMed  Google Scholar 

  26. Greiner J, Ringhoffer M, Taniguchi M, Li L, Schmitt A, Shiku H et al. mRNA expression of leukemia-associated antigens in patients with acute myeloid leukemia for the development of specific immunotherapies. Int J Cancer 2004; 108: 704–711.

    Article  CAS  PubMed  Google Scholar 

  27. Amir AL, van der Steen DM, van Loenen MM, Hagedoorn RS, de Boer R, Kester MG et al. PRAME specific allo-HLA restricted T-cells with potent antitumor reactivity useful for therapeutic T cell receptor gene transfer. Clin Cancer Res 2011; 17: 5615–5625.

    Article  CAS  PubMed  Google Scholar 

  28. Saito Y, Kitamura H, Hijikata A, Tomizawa-Murasawa M, Tanaka S, Takagi S et al. Identification of therapeutic targets for quiescent, chemotherapy-resistant human leukemia stem cells. Sci Transl Med 2010; 2: 17–19.

    Article  CAS  Google Scholar 

  29. Majeti R, Becker MW, Tian Q, Lee TL, Yan X, Liu R et al. Dysregulated gene expression networks in human acute myelogenous leukemia stem cells. Proc Natl Acad Sci USA 2009; 106: 3396–3401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gerber JM, Qin L, Kowalski J, Smith BD, Griffin CA, Vala MS et al. Characterization of chronic myeloid leukemia stem cells. Am J Hematol 2011; 86: 31–37.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gal H, Amariglio N, Trakhtenbrot L, Jacob-Hirsh J, Margalit O, Avigdor A et al. Gene expression profiles of AML derived stem cells; similarity to hematopoietic stem cells. Leukemia 2006; 20: 2147–2154.

    Article  CAS  PubMed  Google Scholar 

  32. Ochi T, Fujiwara H, Suemori K, Azuma T, Yakushijin Y, Hato T et al. Aurora-A kinase: a novel target of cellular immunotherapy for leukemia. Blood 2009; 113: 66–74.

    Article  CAS  PubMed  Google Scholar 

  33. Ochsenreither S, Majeti R, Schmitt T, Stirewalt D, Keilholz U, Loeb KR et al. Cyclin-A1 represents a new immunogenic targetable antigen expressed in acute myeloid leukemia stem cells with characteristics of a cancer-testis antigen. Blood 2012; 119: 5492–5501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stroopinsky D, Rosenblatt J, Ito K, Yin L, Rajabi H, Vasir B et al. Targeting acute myeloid leukemia stem cells by MUC1-C subunit inhibition. Blood 2010; 116: 369–369.

    Article  Google Scholar 

  35. Gao L, Bellantuono I, Elsasser A, Marley SB, Gordon MY, Goldman JM et al. Selective elimination of leukemic CD34(+) progenitor cells by cytotoxic T lymphocytes specific for WT1. Blood 2000; 95: 2198–2203.

    Article  CAS  PubMed  Google Scholar 

  36. Greiner J, Bullinger L, Guinn BA, Dohner H, Schmitt M . Leukemia-associated antigens are critical for the proliferation of acute myeloid leukemia cells. Clin Cancer Res 2008; 14: 7161–7166.

    Article  CAS  PubMed  Google Scholar 

  37. Schmidt SM, Konig T, Bringmann A, Held S, von Schwarzenberg K, Heine A et al. Characterization of BAX inhibitor-1as a novel leukemia-associated antigen. Leukemia 2009; 23: 1818–1824.

    Article  CAS  PubMed  Google Scholar 

  38. Rizo A, Olthof S, Han L, Vellenga E, de Haan G, Schuringa JJ . Repression of BMI1 in normal and leukemic human CD34(+) cells impairs self-renewal and induces apoptosis. Blood 2009; 114: 1498–1505.

    Article  CAS  PubMed  Google Scholar 

  39. Kaufmann SH, Karp JE, Svingen PA, Krajewski S, Burke PJ, Gore SD et al. Elevated expression of the apoptotic regulator Mcl-1 at the time of leukemic relapse. Blood 1998; 91: 991–1000.

    Article  CAS  PubMed  Google Scholar 

  40. Ito K, Oji Y, Tatsumi N, Shimizu S, Kanai Y, Nakazawa T et al. Antiapoptotic function of 17AA(+)WT1 (Wilms’ tumor gene) isoforms on the intrinsic apoptosis pathway. Oncogene 2006; 25: 4217–4229.

    Article  CAS  PubMed  Google Scholar 

  41. Karakas T, Miething CC, Maurer U, Weidmann E, Ackermann H, Hoelzer D et al. The coexpression of the apoptosis-related genes bcl-2 and wt1 in predicting survival in adult acute myeloid leukemia. Leukemia 2002; 16: 846–854.

    Article  CAS  PubMed  Google Scholar 

  42. Simpson LA, Burwell EA, Thompson KA, Shahnaz S, Chen AR, Loeb DM . The antiapoptotic gene A1/BFL1 is a WT1 target gene that mediates granulocytic differentiation and resistance to chemotherapy. Blood 2006; 107: 4695–4702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Witko-Sarsat V, Canteloup S, Durant S, Desdouets C, Chabernaud R, Lemarchand P et al. Cleavage of p21waf1 by proteinase-3, a myeloid-specific serine protease, potentiates cell proliferation. J Biol Chem 2002; 277: 47338–47347.

    Article  CAS  PubMed  Google Scholar 

  44. Park IK, Morrison SJ, Clarke MF . Bmi1, stem cells, and senescence regulation. J Clin Invest 2004; 113: 175–179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ersvaer E, Zhang JY, McCormack E, Olsnes A, Anensen N, Tan EM et al. Cyclin B1 is commonly expressed in the cytoplasm of primary human acute myelogenous leukemia cells and serves as a leukemia-associated antigen associated with autoantibody response in a subset of patients. Eur J Haematol 2007; 79: 210–225.

    Article  CAS  PubMed  Google Scholar 

  46. Wadia PP, Coram M, Armstrong RJ, Mindrinos M, Butte AJ, Miklos DB . Antibodies specifically target AML antigen NuSAP1 after allogeneic bone marrow transplantation. Blood 2010; 115: 2077–2087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schmitt M, Schmitt A, Rojewski MT, Chen J, Giannopoulos K, Fei F et al. RHAMM-R3 peptide vaccination in patients with acute myeloid leukemia, myelodysplastic syndrome, and multiple myeloma elicits immunologic and clinical responses. Blood 2008; 111: 1357–1365.

    Article  CAS  PubMed  Google Scholar 

  48. Oehler VG, Guthrie KA, Cummings CL, Sabo K, Wood BL, Gooley T et al. The preferentially expressed antigen in melanoma (PRAME) inhibits myeloid differentiation in normal hematopoietic and leukemic progenitor cells. Blood 2009; 114: 3299–3308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yin L, Wu Z, Avigan D, Rosenblatt J, Stone R, Kharbanda S et al. MUC1-C oncoprotein suppresses reactive oxygen species-induced terminal differentiation of acute myelogenous leukemia cells. Blood 2011; 117: 4863–4870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nishida S, Hosen N, Shirakata T, Kanato K, Yanagihara M, Nakatsuka S et al. AML1-ETO rapidly induces acute myeloblastic leukemia in cooperation with the Wilms tumor gene, WT1. Blood 2006; 107: 3303–3312.

    Article  CAS  PubMed  Google Scholar 

  51. Schessl C, Rawat VPS, Cusan M, Deshpande A, Kohl TM, Rosten PM et al. The AML1-ETO fusion gene and the FLT3 length mutation collaborate in inducing acute leukemia in mice. J Clin Invest 2005; 115: 2159–2168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Oancea C, Ruster B, Henschler R, Puccetti E, Ruthardt M . The t(6;9) associated DEK/CAN fusion protein targets a population of long-term repopulating hematopoietic stem cells for leukemogenic transformation. Leukemia 2010; 24: 1910–1919.

    Article  CAS  PubMed  Google Scholar 

  53. Falini B, Gionfriddo I, Cecchetti F, Ballanti S, Pettirossi V, Martelli MP . Acute myeloid leukemia with mutated nucleophosmin (NPM1): any hope for a targeted therapy? Blood Rev 2011; 25: 247–254.

    Article  CAS  PubMed  Google Scholar 

  54. Wojiski S, Guibal FC, Kindler T, Lee BH, Jesneck JL, Fabian A et al. PML-RARalpha initiates leukemia by conferring properties of self-renewal to committed promyelocytic progenitors. Leukemia 2009; 23: 1462–1471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kozu T, Komori A, Sueoka E, Fujiki H, Kaneko Y, Matsui T et al. Significance of MTG8 in leukemogenesis. Leukemia 1997; 11 (Suppl 3): 297–298.

    PubMed  Google Scholar 

  56. Warner JK, Wang JC, Takenaka K, Doulatov S, McKenzie JL, Harrington L et al. Direct evidence for cooperating genetic events in the leukemic transformation of normal human hematopoietic cells. Leukemia 2005; 19: 1794–1805.

    Article  CAS  PubMed  Google Scholar 

  57. Lawrence HJ, Rozenfeld S, Cruz C, Matsukuma K, Kwong A, Komuves L et al. Frequent co-expression of the HOXA9 and MEIS1 homeobox genes in human myeloid leukemias. Leukemia 1999; 13: 1993–1999.

    Article  CAS  PubMed  Google Scholar 

  58. Nolte F, Hofmann W-K . Molecular mechanisms involved in the progression of myelodysplastic syndrome. Fut Oncol 2010; 6: 445–455.

    Article  CAS  Google Scholar 

  59. Yuan J, Takeuchi M, Negishi M, Oguro H, Ichikawa H, Iwama A . Bmi1 is essential for leukemic reprogramming of myeloid progenitor cells. Leukemia 2011; 25: 1335–1343.

    Article  CAS  PubMed  Google Scholar 

  60. Brossart P, Schneider A, Dill P, Schammann T, Grunebach F, Wirths S et al. The epithelial tumor antigen MUC1 is expressed in hematological malignancies and is recognized by MUC1-specific cytotoxic T-lymphocytes. Cancer Res 2001; 61: 6846–6850.

    CAS  PubMed  Google Scholar 

  61. Kapp M, Stevanovic S, Fick K, Tan SM, Loeffler J, Opitz A et al. CD8+ T-cell responses to tumor-associated antigens correlate with superior relapse-free survival after allo-SCT. Bone Marrow Transplant 2009; 43: 399–410.

    Article  CAS  PubMed  Google Scholar 

  62. Beatty GL, Smith JS, Reshef R, Patel KP, Colligon TA, Vance BA et al. Functional unresponsiveness and replicative senescence of myeloid leukemia antigen-specific CD8(+) T cells after allogeneic stem cell transplantation. Clin Cancer Res 2009; 15: 4944–4953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Siegel S, Steinmann J, Schmitz N, Stuhlmann R, Dreger P, Zeis M . Identification of a survivin-derived peptide that induces HLA-A*0201-restricted antileukemia cytotoxic T lymphocytes. Leukemia 2004; 18: 2046–2047.

    Article  CAS  PubMed  Google Scholar 

  64. Rezvani K, Yong ASM, Tawab A, Jafarpour B, Eniafe R, Mielke S et al. Ex vivo characterization of polyclonal memory CD8(+) T-cell responses to PRAME-specific peptides in patients with acute lymphoblastic leukemia and acute and chronic myeloid leukemia. Blood 2009; 113: 2245–2255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li Z, Oka Y, Tsuboi A, Fujiki F, Harada Y, Nakajima H et al. Identification of a WT1 protein-derived peptide, WT1, as a HLA-A 0206-restricted, WT1-specific CTL epitope. Microbiol Immunol 2008; 52: 551–558.

    Article  CAS  PubMed  Google Scholar 

  66. Bellantuono I, Gao L, Parry S, Marley S, Dazzi F, Apperley J et al. Two distinct HLA-A0201-presented epitopes of the Wilms tumor antigen 1 can function as targets for leukemia-reactive CTL. Blood 2002; 100: 3835–3837.

    Article  CAS  PubMed  Google Scholar 

  67. Ohminami H, Yasukawa M, Fujita S . HLA class I-restricted lysis of leukemia cells by a CD8(+) cytotoxic T-lymphocyte clone specific for WT1 peptide. Blood 2000; 95: 286–293.

    Article  CAS  PubMed  Google Scholar 

  68. Anguille S, Smits EL, Cools N, Goossens H, Berneman ZN, Van Tendeloo VF . Short-term cultured, interleukin-15 differentiated dendritic cells have potent immunostimulatory properties. J Transl Med 2009; 7: 109.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Maslak PG, Dao T, Krug LM, Chanel S, Korontsvit T, Zakhaleva V et al. Vaccination with synthetic analog peptides derived from WT1 oncoprotein induces T-cell responses in patients with complete remission from acute myeloid leukemia. Blood 2010; 116: 171–179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Guo Y, Niiya H, Azuma T, Uchida N, Yakushijin Y, Sakai I et al. Direct recognition and lysis of leukemia cells by WT1-specific CD4+ T lymphocytes in an HLA class II-restricted manner. Blood 2005; 106: 1415–1418.

    Article  CAS  PubMed  Google Scholar 

  71. Lehe C, Ghebeh H, Al-Sulaiman A, Al Qudaihi G, Al-Hussein K, Almohareb F et al. The Wilms’ tumor antigen is a novel target for human CD4+ regulatory T cells: implications for immunotherapy. Cancer Res 2008; 68: 6350–6359.

    Article  CAS  PubMed  Google Scholar 

  72. Van Tendeloo VF, Van de Velde A, Van Driessche A, Cools N, Anguille S, Ladell K et al. Induction of complete and molecular remissions in acute myeloid leukemia by Wilms’ tumor 1 antigen-targeted dendritic cell vaccination. Proc Natl Acad Sci USA 2010; 107: 13824–13829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rezvani K, Yong AS, Mielke S, Savani BN, Musse L, Superata J et al. Leukemia-associated antigen-specific T-cell responses following combined PR1 and WT1 peptide vaccination in patients with myeloid malignancies. Blood 2008; 111: 236–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Qazilbash MH, Wieder E, Rios R, Lu SJ, Kant S, Giralt S et al. Vaccination with the PR1 leukemia-associated antigen can induce complete remission in patients with myeloid leukemia. Blood 2004; 104: 77A.

    Article  Google Scholar 

  75. DiPersio JF, Collins RH, Blum W, Devetten MP, Stiff P, Elias L et al. Immune responses in AML patients following vaccination with GRNVAC1, autologous RNA transfected dendritic cells expressing telomerase catalytic subunit hTERT. Blood 2009; 114: 262.

    Article  Google Scholar 

  76. Kitawaki T, Kadowaki N, Fukunaga K, Kasai Y, Maekawa T, Ohmori K et al. Cross-priming of CD8(+) T cells in vivo by dendritic cells pulsed with autologous apoptotic leukemic cells in immunotherapy for elderly patients with acute myeloid leukemia. Exp Hematol 2011; 39: 424–433.

    Article  CAS  PubMed  Google Scholar 

  77. Li L, Giannopoulos K, Reinhardt P, Tabarkiewicz J, Schmitt A, Greiner J et al. Immunotherapy for patients with acute myeloid leukemia using autologous dendritic cells generated from leukemic blasts. Int J Oncol 2006; 28: 855–861.

    CAS  PubMed  Google Scholar 

  78. Molldrem J, Barrett JA inventors. Anti-cancer vaccines (patent application 20060045883). USA 2006.

  79. McLarnon A, Piper KP, Goodyear OC, Arrazi JM, Mahendra P, Cook M et al. CD8(+) T-cell immunity against cancer-testis antigens develops following allogeneic stem cell transplantation and reveals a potential mechanism for the graft-versus-leukemia effect. Haematologica 2010; 95: 1572–1578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yang XF, Wu CJ, Chen L, Alyea EP, Canning C, Kantoff P et al. CML28 is a broadly immunogenic antigen, which is overexpressed in tumor cells. Cancer Res 2002; 62: 5517–5522.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Yang XF, Wu CJ, McLaughlin S, Chillemi A, Wang KS, Canning C et al. CML66, a broadly immunogenic tumor antigen, elicits a humoral immune response associated with remission of chronic myelogenous leukemia. Proc Natl Acad Sci USA 2001; 98: 7492–7497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhang W, Choi J, Zeng W, Rogers SA, Alyea EP, Rheinwald JG et al. Graft-versus-leukemia antigen CML66 elicits coordinated B-cell and T-cell immunity after donor lymphocyte infusion. Clin Cancer Res 2010; 16: 2729–2739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yong AS, Stephens N, Weber G, Li Y, Savani BN, Eniafe R et al. Improved outcome following allogeneic stem cell transplantation in chronic myeloid leukemia is associated with higher expression of BMI-1 and immune responses to BMI-1 protein. Leukemia 2011; 25: 629–637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Spierings E, Goulmy E . Expanding the immunotherapeutic potential of minor histocompatibility antigens. J Clin Invest 2005; 115: 3397–3400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Norde WJ, Overes IM, Maas F, Fredrix H, Vos JC, Kester MG et al. Myeloid leukemic progenitor cells can be specifically targeted by minor histocompatibility antigen LRH-1-reactive cytotoxic T cells. Blood 2009; 113: 2312–2323.

    Article  CAS  PubMed  Google Scholar 

  86. Greiner J, Ringhoffer M, Taniguchi M, Hauser T, Schmitt A, Dohner H et al. Characterization of several leukemia-associated antigens inducing humoral immune responses in acute and chronic myeloid leukemia. Int J Cancer 2003; 106: 224–231.

    Article  CAS  PubMed  Google Scholar 

  87. Scheibenbogen C, Letsch A, Thiel E, Schmittel A, Mailaender V, Baerwolf S et al. CD8 T-cell responses to Wilms tumor gene product WT1 and proteinase 3 in patients with acute myeloid leukemia. Blood 2002; 100: 2132–2137.

    Article  CAS  PubMed  Google Scholar 

  88. Rezvani K, Brenchley JM, Price DA, Kilical Y, Gostick E, Sewell AK et al. T-cell responses directed against multiple HLA-A*0201-restricted epitopes derived from Wilms’ tumor 1 protein in patients with leukemia and healthy donors: identification, quantification, and characterization. Clin Cancer Res 2005; 11: 8799–8807.

    Article  CAS  PubMed  Google Scholar 

  89. Goodyear O, Agathanggelou A, Novitzky-Basso I, Siddique S, McSkeane T, Ryan G et al. Induction of a CD8+ T-cell response to the MAGE cancer testis antigen by combined treatment with azacitidine and sodium valproate in patients with acute myeloid leukemia and myelodysplasia. Blood 2010; 116: 1908–1918.

    Article  CAS  PubMed  Google Scholar 

  90. Andersen MH, Svane IM, Kvistborg P, Nielsen OJ, Balslev E, Reker S et al. Immunogenicity of Bcl-2 in patients with cancer. Blood 2005; 105: 728–734.

    Article  CAS  PubMed  Google Scholar 

  91. Suemori K, Fujiwara H, Ochi T, Azuma T, Yamanouchi J, Narumi H et al. Identification of an epitope derived from CML66, a novel tumor-associated antigen expressed broadly in human leukemia, recognized by human leukocyte antigen-A*2402-restricted cytotoxic T lymphocytes. Cancer Sci 2008; 99: 1414–1419.

    Article  CAS  PubMed  Google Scholar 

  92. Suemori K, Fujiwara H, Ochi T, Azuma T, Yamanouchi J, Narumi H et al. Identification of a novel epitope derived from CML66 that is recognized by anti-leukaemia cytotoxic T lymphocytes. Br J Haematol 2009; 146: 115–118.

    Article  CAS  PubMed  Google Scholar 

  93. Siegel S, Wirth S, Kabelitz D, Schmitz N, Zeis M . Identification of HLA-A*0201-presented T-cell epitopes derived from the tumor-associated antigen M-phase phosphoprotein II in patients with acute myeloid leukemia. Leukemia 2010; 24: 1660–1662.

    Article  CAS  PubMed  Google Scholar 

  94. Qazilbash MH, Wieder ED, Thall PF, Wang X, Rios RL, Lu S et al. PR1 vaccine elicited immunological response after hematopoietic stem cell transplantation is associated with better clinical response and event-free survival. Blood 2007; 110: 178A.

    Article  Google Scholar 

  95. Greiner J, Schmitt A, Giannopoulos K, Rojewski MT, Goetz M, Funk I et al. High-dose RHAMM-R3 peptide vaccination for patients with acute myeloid leukemia, myelodysplastic syndrome and multiple myeloma. Haematologica 2010; 95: 1191–1197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Khoury HJ, Collins RH, Blum W, Maness L, Stiff P, Kelsey SM et al. Prolonged administration of the telomerase vaccine GRNVAC1 is well tolerated and appears to be associated with favorable outcomes in high-risk acute myeloid leukemia (AML). Blood 2010; 116: 904.

    Article  Google Scholar 

  97. Melenhorst JJ, Scheinberg P, Chattopadhyay PK, Gostick E, Ladell K, Roederer M et al. High avidity myeloid leukemia-associated antigen-specific CD8+ T cells preferentially reside in the bone marrow. Blood 2009; 113: 2238–2244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Miyamoto T, Weissman IL, Akashi K . AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8;21 chromosomal translocation. Proc Natl Acad Sci USA 2000; 97: 7521–7526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Puccetti E, Ruthardt M . Acute promyelocytic leukemia: PML/RARalpha and the leukemic stem cell. Leukemia 2004; 18: 1169–1175.

    Article  CAS  PubMed  Google Scholar 

  100. Dermime S, Bertazzoli C, Marchesi E, Ravagnani F, Blaser K, Corneo GM et al. Lack of T-cell-mediated recognition of the fusion region of the pml/RAR-alpha hybrid protein by lymphocytes of acute promyelocytic leukemia patients. Clin Cancer Res 1996; 2: 593–600.

    CAS  PubMed  Google Scholar 

  101. Levis M, Murphy KM, Pham R, Kim KT, Stine A, Li L et al. Internal tandem duplications of the FLT3 gene are present in leukemia stem cells. Blood 2005; 106: 673–680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Walsby E, Walsh V, Pepper C, Burnett A, Milis K . Effects of the aurora kinase inhibitors AZD1152-HQPA and ZM447439 on growth arrest and polyploidy in acute myeloid leukemia cell lines and primary blasts. Haematologica 2008; 93: 662–669.

    Article  CAS  PubMed  Google Scholar 

  103. Sawa M, Yamamoto K, Yokozawa T, Kiyoi H, Hishida A, Kajiguchi T et al. BMI-1 is highly expressed in M0-subtype acute myeloid leukemia. Int J Hematol 2005; 82: 42–47.

    Article  CAS  PubMed  Google Scholar 

  104. Chowdhury M, Mihara K, Yasunaga S, Ohtaki M, Takihara Y, Kimura A . Expression of Polycomb-group (PcG) protein BMI-1 predicts prognosis in patients with acute myeloid leukemia. Leukemia 2007; 21: 1116–1122.

    Article  CAS  PubMed  Google Scholar 

  105. Smith LL, Yeung J, Zeisig BB, Popov N, Huijbers I, Barnes J et al. Functional crosstalk between Bmi1 and MLL/Hoxa9 axis in establishment of normal hematopoietic and leukemic stem cells. Cell Stem Cell 2011; 8: 649–662.

    Article  CAS  PubMed  Google Scholar 

  106. Fujii N, Turtle CJ, Campregher PV, Warren EH . Generation of CD8(+) cytotoxic T cell clones recognizing BMI1-derived peptides. Blood 2008; 112: 1000–1001.

    Article  Google Scholar 

  107. Xie LH, Sin FW, Cheng SC, Cheung YK, Chan KT, Xie Y et al. Activation of cytotoxic T lymphocytes against CML28-bearing tumors by dendritic cells transduced with a recombinant adeno-associated virus encoding the CML28 gene. Cancer Immunol Immunother 2008; 57: 1029–1038.

    Article  PubMed  Google Scholar 

  108. Wu CJ, Biernacki M, Kutok JL, Rogers S, Chen L, Yang XF et al. Graft-versus-leukemia target antigens in chronic myelogenous leukemia are expressed on myeloid progenitor cells. Clin Cancer Res 2005; 11: 4504–4511.

    Article  CAS  PubMed  Google Scholar 

  109. Iida H, Towatari M, Tanimoto M, Morishita Y, Kodera Y, Saito H . Overexpression of cyclin E in acute myelogenous leukemia. Blood 1997; 90: 3707–3713.

    Article  CAS  PubMed  Google Scholar 

  110. Maecker B, Sherr DH, Vonderheide RH, von Bergwelt-Baildon MS, Hirano N, Anderson KS et al. The shared tumor-associated antigen cytochrome P4501B1 is recognized by specific cytotoxic T cells. Blood 2003; 102: 3287–3294.

    Article  CAS  PubMed  Google Scholar 

  111. Kozu T, Komori A, Ishii M . AML1/MTG8, fused gene of t(8;21) AML and clinical usefulness of MTG8 protein and circulating MTG8-autoantibody. Biotherapy 1997; 11: 44–50.

    Google Scholar 

  112. Capraro V, Zane L, Poncet D, Perol D, Galia P, Preudhomme C et al. Telomere deregulations possess cytogenetic, phenotype, and prognostic specificities in acute leukemias. Exp Hematol 2011; 39: 195–202.

    Article  CAS  PubMed  Google Scholar 

  113. Schroers R, Shen L, Rollins L, Rooney CM, Slawin K, Sonderstrup G et al. Human telomerase reverse transcriptase-specific T-helper responses induced by promiscuous major histocompatibility complex class II-restricted epitopes. Clin Cancer Res 2003; 9: 4743–4755.

    CAS  PubMed  Google Scholar 

  114. Sorensen RB, Nielsen OJ, Thor Straten P, Andersen MH . Functional capacity of Mcl-1-specific cytotoxic T-cells. Leukemia 2006; 20: 1457–1458.

    Article  CAS  PubMed  Google Scholar 

  115. Andersen RS, Wenandy L, Sorensen RB, thor Straten P, Andersen MH . Mcl-1 and anticancer vaccination: identification of an HLA-A2-restricted epitope. Leukemia 2008; 22: 668–669.

    Article  CAS  PubMed  Google Scholar 

  116. Steinbach D, Onda M, Voigt A, Dawczynski K, Wittig S, Hassan R et al. Mesothelin, a possible target for immunotherapy, is expressed in primary AML cells. Eur J Haematol 2007; 79: 281–286.

    Article  CAS  PubMed  Google Scholar 

  117. de Rijke B, van Horssen-Zoetbrood A, Beekman JM, Otterud B, Maas F, Woestenenk R et al. A frameshift polymorphism in P2X5 elicits an allogeneic cytotoxic T lymphocyte response associated with remission of chronic myeloid leukemia. J Clin Invest 2005; 115: 3506–3516.

    Article  CAS  PubMed  Google Scholar 

  118. Overes IM, Fredrix H, Kester MG, Falkenburg JH, van der Voort R, de Witte TM et al. Efficient activation of LRH-1-specific CD8+ T-cell responses from transplanted leukemia patients by stimulation with P2X5 mRNA-electroporated dendritic cells. J Immunother 2009; 32: 539–551.

    Article  CAS  PubMed  Google Scholar 

  119. Dengler R, Munstermann U, al-Batran S, Hausner I, Faderl S, Nerl C et al. Immunocytochemical and flow cytometric detection of proteinase 3 (myeloblastin) in normal and leukaemic myeloid cells. Br J Haematol 1995; 89: 250–257.

    Article  CAS  PubMed  Google Scholar 

  120. Braunschweig I, Wang CQ, Molldrem JJ . Cytotoxic T lymphocytes (CTL) specific for myeloperoxidase-derived HLA-A2-restricted peptides specifically lyse AML and CML cells. Blood 2000; 96: 761A.

    Google Scholar 

  121. Siegel S, Wirth S, Schweizer M, Schmitz N, Zeis M . M-phase phosphoprotein 11 is a highly immunogenic tumor antigen in patients with acute myeloid leukemia. Acta Haematol 2012; 127: 193–197.

    Article  PubMed  Google Scholar 

  122. Al Qudaihi G, Lehe C, Dickinson A, Eltayeb K, Rasheed W, Chaudhri N et al. Identification of a novel peptide derived from the M-phase phosphoprotein 11 (MPP11) leukemic antigen recognized by human CD8+ cytotoxic T lymphocytes. Hematol Oncol Stem Cell Ther 2010; 3: 24–33.

    Article  CAS  PubMed  Google Scholar 

  123. Boss CN, Grunebach F, Brauer K, Hantschel M, Mirakaj V, Weinschenk T et al. Identification and characterization of T-cell epitopes deduced from RGS5, a novel broadly expressed tumor antigen. Clin Cancer Res 2007; 13: 3347–3355.

    Article  CAS  PubMed  Google Scholar 

  124. Greiner J, Ringhoffer M, Taniguchi M, Schmitt A, Kirchner D, Krahn G et al. Receptor for hyaluronan acid-mediated motility (RHAMM) is a new immunogenic leukemia-associated antigen in acute and chronic myeloid leukemia. Exp Hematol 2002; 30: 1029–1035.

    Article  CAS  PubMed  Google Scholar 

  125. Greiner J, Li L, Ringhoffer M, Barth TF, Giannopoulos K, Guillaume P et al. Identification and characterization of epitopes of the receptor for hyaluronic acid-mediated motility (RHAMM/CD168) recognized by CD8+ T cells of HLA-A2-positive patients with acute myeloid leukemia. Blood 2005; 106: 938–945.

    Article  CAS  PubMed  Google Scholar 

  126. Guinn B, Greiner J, Schmitt M, Mills KI . Elevated expression of the leukemia-associated antigen SSX2IP predicts survival in acute myeloid leukemia patients who lack detectable cytogenetic rearrangements. Blood 2009; 113: 1203–1204.

    Article  CAS  PubMed  Google Scholar 

  127. Adida C, Recher C, Raffoux E, Daniel MT, Taksin AL, Rousselot P et al. Expression and prognostic significance of survivin in de novo acute myeloid leukaemia. Br J Haematol 2000; 111: 196–203.

    CAS  PubMed  Google Scholar 

  128. Bergmann L, Miething C, Maurer U, Brieger J, Karakas T, Weidmann E et al. High levels of Wilms’ tumor gene (wt1) mRNA in acute myeloid leukemias are associated with a worse long-term outcome. Blood 1997; 90: 1217–1225.

    Article  CAS  PubMed  Google Scholar 

  129. Asemissen AM, Keilholz U, Tenzer S, Muller M, Walter S, Stevanovic S et al. Identification of a highly immunogenic HLA-A*01-binding T cell epitope of WT1. Clin Cancer Res 2006; 12: 7476–7482.

    Article  CAS  PubMed  Google Scholar 

  130. Martinez A, Olarte I, Mergold MA, Gutierrez M, Rozen E, Collazo J et al. mRNA expression of MAGE-A3 gene in leukemia cells. Leuk Res 2007; 31: 33–37.

    Article  CAS  PubMed  Google Scholar 

  131. Atanackovic D, Luetkens T, Kloth B, Fuchs G, Cao Y, Hildebrandt Y et al. Cancer-testis antigen expression and its epigenetic modulation in acute myeloid leukemia. Am J Hematol 2011; 86: 918–922.

    Article  CAS  PubMed  Google Scholar 

  132. Guinn BA, Gilkes AF, Mufti GJ, Burnett AK, Mills KI . The tumour antigens RAGE-1 and MGEA6 are expressed more frequently in the less lineage restricted subgroups of presentation acute myeloid leukaemia. Br J Haematol 2006; 134: 238–239.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was made possible by funding from the Research Foundation—Flanders (FWO), the Foundation against Cancer (Stichting tegen Kanker), the Flemish League against Cancer (Vlaamse Liga tegen Kanker), the Belgian National Cancer Plan (initiative 29) and the Foundation VOCATIO (Belgium). SA is a PhD fellow of the Research Foundation—Flanders (FWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Anguille.

Ethics declarations

Competing interests

The authors declare no conflict of interest

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anguille, S., Van Tendeloo, V. & Berneman, Z. Leukemia-associated antigens and their relevance to the immunotherapy of acute myeloid leukemia. Leukemia 26, 2186–2196 (2012). https://doi.org/10.1038/leu.2012.145

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.145

Keywords

This article is cited by

Search

Quick links