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In a multi-institutional collaborative project, 1473 patients
with myeloproliferative neoplasms (MPN) were screened for
isocitrate dehydrogenase 1 (IDH1)/IDH2 mutations: 594 essen-
tial thrombocythemia (ET), 421 polycythemia vera (PV), 312
primary myelofibrosis (PMF), 95 post-PV/ET MF and 51 blast-
phase MPN. A total of 38 IDH mutations (18 IDH1-R132, 19 IDH2-
R140 and 1 IDH2-R172) were detected: 5 (0.8%) ET, 8 (1.9%)
PV, 13 (4.2%) PMF, 1 (1%) post-PV/ET MF and 11 (21.6%)
blast-phase MPN (Po0.01). Mutant IDH was documented in the
presence or absence of JAK2, MPL and TET2 mutations, with
similar mutational frequencies. However, IDH-mutated patients
were more likely to be nullizygous for JAK2 46/1 haplotype,
especially in PMF (P¼0.04), and less likely to display complex
karyotype, in blast-phase disease (Po0.01). In chronic-phase
PMF, JAK2 46/1 haplotype nullizygosity (Po0.01; hazard ratio
(HR) 2.9, 95% confidence interval (CI) 1.7–5.2), but not IDH
mutational status (P¼0.55; HR 1.3, 95% CI 0.5–3.4), had an
adverse effect on survival. This was confirmed by multivariable
analysis. In contrast, in both blast-phase PMF (P¼0.04) and
blast-phase MPN (P¼ 0.01), the presence of an IDH mutation
predicted worse survival. The current study clarifies disease-
and stage-specific IDH mutation incidence and prognostic
relevance in MPN and provides additional evidence for the
biological effect of distinct JAK2 haplotypes.
Leukemia (2010) 24, 1302–1309; doi:10.1038/leu.2010.113;
published online 27 May 2010
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Introduction

Despite the seminal discovery of JAK2 or MPL mutations in the
majority of patients with BCR-ABL1-negative myeloproliferative
neoplasms (MPN),1–4 it is becoming increasingly evident that
these mutations do not signify either disease-initiating or
leukemia-promoting events.5,6 It is therefore important to keep
looking for additional molecular alterations to clarify the genetic
underpinnings of both chronic- and blast-phase MPN. In the
last 2 years, mutations involving TET2, ASXL1 and CBL have
been described in some patients with BCR-ABL1-negative MPN,
including polycythemia vera (PV), essential thrombocythemia
(ET) and primary myelofibrosis (PMF).7 The precise pathogenetic
contribution of these mutations and their clinical relevance are

currently under investigation. The glioma-associated8 isocitrate
dehydrogenase 1 (IDH1) and IDH2 mutations are the latest to
be added to the ‘MPN mutations list’.9

IDH1, located on chromosome 2q33.3, and IDH2, located on
chromosome 15q26.1, encode enzymes that catalyze oxidative
decarboxylation of isocitrate to a-ketoglutarate. IDH1 (cyto-
plasm and peroxisome) and IDH2 (mitochondria) use NADPþ

as a co-factor to generate NADPH, which is important in the
production of intracellular glutathione. Intact IDH activity is
therefore necessary for cellular protection from oxidative stress.
Mutant IDH has decreased affinity to isocitrate, but displays
neomorphic catalytic activity toward a-ketoglutarate, the net
result being decreased supply of a-ketoglutarate and accumula-
tion of 2-hydroxyglutarate.10–13 It is currently believed that these
intracellular changes facilitate oncogenic pathways including
activation of HIF-1a.10

IDH1 and IDH2 mutations were first described in low-grade
gliomas/secondary glioblastomas8 and subsequently in acute
myeloid leukemia (AML),14 with respective mutational frequen-
cies of B70 and 8%. We recently screened 200 patients
with either chronic- or blast-phase MPN for IDH mutations, and
identified 9 patients with either IDH1 (n¼ 5) or IDH2 (n¼ 4)
mutations.9 Mutational frequencies were B21% for blast-phase
MPN and B4% for PMF. In the current study, we expanded our
study cohort to include 1473 patients recruited from three MPN
centers of excellence, with the intent to accurately describe the
prevalence of IDH mutations in chronic-, fibrotic- and blast-
phase PV, ET and PMF. In addition, IDH-mutated patients were
analyzed for their cytogenetic and molecular (that is, JAK2, MPL
and TET2 mutation and JAK2 haplotype status) phenotype, as
well as their prognostic relevance.

Materials and methods

This study was approved by the Mayo Clinic institutional review
board. All patients provided authorization for use of their
medical records for research purposes, and the research was
carried out according to the principles of the Declaration of
Helsinki. Patient samples were obtained from the Mayo Clinic,
Harvard Medical Institute and University of Florence. Muta-
tional analyses were performed on DNA derived from either
bone marrow or peripheral blood granulocytes. JAK2 46/1
haplotype analysis on patient samples accrued from Harvard was
performed on germline DNA. Diagnoses of MPN, post-PV/ET MF
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and AML, in patient samples accrued from the Mayo Clinic and
the University of Florence, were according to the World Health
Organization and International Working Group criteria.7,15

Diagnoses in patients accrued from Harvard were self-reported
during an internet-based collection of samples, as previously
detailed.16

DNA from either bone marrow (Mayo Clinic samples) or
granulocytes (samples from Harvard and the University
of Florence) was extracted using conventional methods. MPL,
JAK2 and TET2 mutation and JAK2 haplotype analyses were
performed according to previously published methods.4,17–19

With regard to IDH mutation analysis, Harvard patient samples

were analyzed using the following primers for IDH1, which
cover amino acid residues 41–138: sense, 50-TGTGTTGAGAT
GGACGCCTA-30 and anti-sense, 50-GGTGTACTCAGAGCCTTC
GC-30. Sequencing of IDH2 used primers that covered amino
acid residues 125–226: sense, 50-CTGCCTCTTTGTGGCCTA
AG-30 and anti-sense, 50-ATTCTGGTTGAAAGATGGCG-30.
Sequence analysis was performed using Mutation Surveyor
(SoftGenetics, State College, PA, USA) and all mutations were
validated by repeat PCR and sequencing on unamplified DNA
from the archival sample.

Mayo Clinic and University of Florence patient samples were
screened for IDH1 and IDH2 mutations by direct sequencing
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Figure 1 High-resolution melting (HRM) normalized and temperature-shifted difference plot for IDH1 (a) and IDH2 (b) and corresponding
sequences (c and d).

Table 1 Specific diagnoses, age/sex distribution, JAK2, MPL and TET2 mutational status and JAK2 non-46/1 haplotype frequency in 1473
patients with polycythemia vera (PV), essential thrombocythemia (ET), primary myelofibrosis (PMF), post-PV MF, post-ET MF, post-PV acute
myeloid leukemia (post-PV AML), post-ET AML or post-PMF AML

MPN center Diagnosis N Median age
in years (range)

Males
(%)

JAK2 mutation
frequency

MPL mutation
frequency

TET2 mutation
frequency

JAK2 46/1 nullizygous
frequency

Florence PV 150 62 (16–91) 66 83% (123/149)a NA NA 6% (1/18)
(n¼522) ET 199 56 (13–93) 37 63% (124/198) 2.2% (4/184) NA 52% (25/48)

PMF 107 63 (16–90) 67 65% (69/106) 4% (4/98) NA 39% (37/96)
Post-PV MF 32 62 (48–78) 47 100% (32/32) 0% (0/28) NA 0% (0/16)
Post-ET MF 26 63 (33–82) 50 39% (10/26) 13% (3/24) NA 27% (3/11)
Post-PV AML 1 66 0 100% (1/1) 0% (0/1) NA NA
Post-ET AML 2 65–70 0 50% (1/2) 0% (0/1) NA NA
Post-PMF AML 5 73 (67–83) 80 20% (1/5) 0% (0/5) NA 20% (1/5)

Harvard PV 159 59 (32–85) 48 93% (139/150)a 0% (0/159) 9.4% (15/159) 23% (29/125)
(n¼322) ET 124 57 (31–84) 26 31% (35/114) 3.2% (4/124) 8% (10/124) 42% (41/98)

PMF 39 64 (50–70) 49 42% (16/38) 5.1% (2/39) 7.7% (3/39) 22% (5/23)

Mayo PV 112 66 (21–95) 48 95% (106/112)a 1.8% (1/56) 15.7% (14/89) 25% (25/99)
(n¼629) ET 271 63 (15–87) 38 49% (132/271) 4.9% (7/143) 5.7% (3/53) 34% (91/266)

PMF 166 62 (35–82) 67 57% (95/166) 10% (11/108) 18% (10/57) 35% (55/158)
Post-PV MF 22 65 (47–75) 64 100% (22/22) 7.7% (1/13) 7.7% (1/13) 5% (1/20)
Post-ET MF 15 63 (39–75) 80 47% (7/15) 10% (1/10) 12.5% (1/8) 31% (4/13)
Post-PV AML 11 64 (48–87) 64 100% (11/11) 0% (0/7) 20% (1/5) 36% (4/11)
Post-ET AML 5 64 (50–75) 60 60% (3/5) 0% (0/5) 25% (1/4) 20% (1/5)
Post-PMF AML 27 66 (49–83) 74 48% (13/27) 9% (2/22) 0% (0/7) 35% (8/23)

Abbreviation: NA, not done or not available.
aIncludes JAK2 exon 12 mutations: two cases from Mayo clinic and one case from Harvard.
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and/or high-resolution melting assay. Direct sequencing for
IDH1 exon 4 mutations was carried out using the following
primer sequences: sense, 50-CGGTCTTCAGAGAAGCCATT-30

and anti-sense, 50-CACATTATTGCCAACATGAC-30.18 IDH2
exon 4 was amplified using sense, 50-CCACTATTATCTCTGTC
CTC-30 and anti-sense, 50-GCTAGGCGAGGAGCTCCAGT-30.19

Both reactions were performed in 25ml volume containing
100 ng of DNA, 0.25 U Taq polymerase, 0.3 mM each of dATP,
dCTP, dGTP and dTTP, 5ml of a 10� PCR buffer (Roche
Diagnostics, Indianapolis, IN, USA) and 0.2 mM each of sense
and anti-sense primers. The reaction was denatured at 94 1C for
3 min followed by 35 cycles of denaturing at 94 1C for 30 s,
annealing at 57 1C for 30 s and extension at 72 1C for 40 s.
After a final extension at 72 1C for 2 min, the products
were confirmed by running on 1.3% agarose gel and purified
using Qiagen’s PCR Quick Purification Kit. The product was
sequenced using the ABI PRISM 3730xl analyzer (Applied
Biosystems Inc, Foster City, CA, USA) to screen for the presence
of mutations.

High-resolution melting was performed using the LightCycler
480 real-time PCR system (Roche Diagnostics), using the above-
mentioned primers for IDH1 mutations (R130) and the following
primers for IDH2 mutations (R140 and R172): R140 sense,
50-GCTGAAGAAGATGTGGAA-30 and anti-sense, 50-TGATGG
GCTCCCGGAAGA-30; R172 sense, 50-CCAAGCCCATCACCAT
TG-30 and anti-sense, 50-CCCAGGTCAGTGGATCCC-30 (Figure 1).

Conventional statistical procedures were used (SAS Institute,
Cary, NC, USA). All statistically analyzed data were obtained at
time of IDH mutation analysis. All P-values were two-tailed
and statistical significance was set at the level of Po0.05.
Categorical variables were described as count and relative
frequency and compared by w2 statistics. Comparison of
continuous variables between categories was performed by
the Mann–Whitney U-test. Survival analysis was performed
by the Kaplan–Meier method taking the interval from the date
of diagnosis, for chronic-phase disease, or from the date of
leukemic transformation, for blast-phase disease, to death
or last contact. The log-rank test was used to compare
survival data. Cox regression model was used for multivariable
analysis.

Results

Disease- and stage-specific IDH mutational frequencies
A total of 1473 patients with BCR–ABL1-negative MPN were
recruited from the Mayo Clinic, Rochester, MN, USA (n¼ 629),
University of Florence, Florence, Italy (n¼ 522) and Harvard
Medical Institute, Boston, Massachusetts, USA (n¼ 322).
Specific diagnoses included ET (n¼ 594), PV (n¼ 421), PMF
(n¼ 312), post-PV MF (n¼ 54), post-ET MF (n¼ 41), post-PV
AML (n¼ 12), post-ET AML (n¼ 7) and post-PMF AML (n¼ 32).
Table 1 provides clinical and laboratory details of the study
population including age and sex distribution, specific diag-
noses and JAK2, MPL and TET2 mutational and JAK2 46/1
haplotype status, stratified by center of patient recruitment.
A total of 38 IDH mutations were documented (Table 2): 18
involved IDH1 (10 R132S, 7 R132C and 1 R132G) and 20 IDH2
(18 R140Q, 1 R140W and 1 R172G). IDH mutations were
infrequent in chronic- or fibrotic-phase disease and significantly
more prevalent in blast-phase disease (Po0.01; Table 3):
5 (0.8%) in ET, 8 (1.9%) in PV, 13 (4.1%) in PMF, 1 (1%) in
post-ET/PV MF, none in blast-phase ET, 3 (25%) in blast-phase
PV and 8 (25%) in blast-phase PMF.

Correlation of IDH mutations with other
MPN-associated mutations and JAK2 46/1 haplotype
Considering the preponderance of informative cases with
centrally confirmed diagnosis and availability of a more
complete laboratory data, the current analysis was limited to
patients from the Mayo Clinic cohort (n¼ 629). IDH mutational
frequencies were similar among JAK2- (3.6%), MPL- (4.3%) and
TET2 (3.2%)-mutated patients and their respective mutation-
negative counterparts (4.2, 5.3 and 6.3%; Table 3). In other
words, mutant IDH was shown to co-occur with a JAK2, MPL or
TET2 mutation, and mutational frequency did not appear to
be influenced by either the type of the coexisting mutation
(P¼ 0.96) or the presence or absence of each specific mutation
(Table 3). However, IDH-mutated cases were more likely to be
nullizygous for JAK2 46/1 haplotype, especially when analysis
was restricted to informative (that is, with JAK2 46/1 haplotype
information) patients with chronic- (n¼ 158) or blast (n¼ 23)-
phase PMF, analyzed together (P¼ 0.007) or separately
(P¼ 0.04; Table 4).

Clinical correlates and prognostic relevance
To avoid disease- or stage-specific confounding factors, as well
as assure adequate sample size of informative cases, clinical
correlative and prognostic studies were limited to PMF. In this
patient cohort, detailed clinical information was available in
111 patients with chronic-phase PMF (including 7 IDH-mutated
cases) and 27 patients with blast-phase PMF (including 8 IDH-
mutated cases), both patient populations were accrued from the
Mayo Clinic cohort. In both chronic- and blast-phase PMF, the
presence of IDH mutations was not influenced by either age
(P¼ 0.51 and 0.70, respectively) or gender (P¼ 0.09 and 0.3,
respectively). In chronic-phase disease, comparison of prog-
nostically relevant disease variables at diagnosis revealed that
cytogenetic findings in IDH-mutated cases often belonged to a
low- or intermediate-risk category,20 although the difference
was not statistically significant (Table 4). Similarly, IDH-mutated
blast-phase PMF was less likely to display complex karyotype
(0 vs 64% in IDH-unmutated cases; P¼ 0.001).

In addition to biological implications, the aforementioned
associations of IDH mutations with favorable cytogenetic profile
and JAK2 46/1 haplotype nullizygosity, both which have
previously been shown to be prognostically relevant,19,20

mandated their inclusion as covariates during multivariable
survival analysis. In chronic-phase PMF, univariate analysis
showed statistically significant adverse survival effect from JAK2
46/1 haplotype nullizygosity (P¼ 0.0001; 34 nullizygous vs 74
not nullizygous), high-risk karyotype (Po0.0001; 13 high-risk vs
98 not high-risk) and higher International Prognostic Scoring
System (IPSS; 27 high, 29 intermediate-2, 30 intermediate-1 and
25 low-risk patients)21 risk score (Po0.0001), but not from IDH
mutational status (P¼ 0.54; 7 mutated vs 104 unmutated;
Figure 2). Multivariable analysis confirmed the independent
prognostic value of JAK2 46/1 haplotype status (hazard ratio
(HR) 2.2, 95% confidence interval (CI) 1.2–4.2), karyotype
(HR 2.8, 95% CI 1.3–5.9) and IPSS risk score (HR 4.8, 95% CI
2.0–11.5).

In blast-phase PMF, despite its association with noncomplex
karyotype, the presence of mutant IDH predicted shortened
survival, calculated from the time of disease transformation
(P¼ 0.04), and there was a similar trend for JAK2 non-46/1
haplotype (P¼ 0.14; Figure 3). Significance was lost for both
during multivariable analysis, probably because of small sample
size. IDH mutation status also predicted worse survival when
the analysis included all blast-phase MPN cases from the Mayo
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Table 3 IDH mutational frequencies in 1473 patients with polycythemia vera (PV), essential thrombocythemia (ET), primary myelofibrosis
(PMF), post-PV MF, post-ET MF, post-PV acute myeloid leukemia (post-PV AML), post-ET AML or post-PMF AML

Variables Number of
patients

IDH mutated
(IDH1 or IDH2), n (%)

IDH1
mutated, n

IDH2
mutated, n

P-value

All patients 1473 38 18 20 o0.01
PV 421 8 (1.9%) 2 6
ET 594 5 (0.8%) 1 4
PMF 312 13 (4.2%) 7 6
Post-PV MF 54 1 (1.9%) 0 1
Post-ET MF 41 0 0 0
Post-PV AML 12 3 (25%) 2 1
Post-ET AML 7 0 0 0
Post-PMF AML 32 8 (25%) 6 2
JAK2 mutated vs wild type (n¼ 629) a 389 vs 240 14 (3.6%) vs 10 (4.2%) 0.72
MPL mutated vs wild type (n¼364) a 23 vs 341 1 (4.3%) vs 18 (5.3%) 0.85
TET2 mutated vs wild type (n¼237) a 31 vs 206 1 (3.2%) vs 13 (6.3%) 0.5
JAK2 46/1 nullizygous vs not nullizygous (n¼596) a 189 vs 407 11 (5.8%) vs 12 (2.9%) 0.09

Abbreviations: AML, acute myeloid leukemia; IDH, isocitrate dehydrogenase; PMF, primary myelofibrosis.
aAnalysis limited to Mayo clinic patients only and ‘n’ signifies number of patients evaluated.

Table 4 IDH mutational frequencies in 193 Mayo clinic patients with chronic-phase (n¼ 166) or blast-phase (n¼27) primary myelofibrosis
(PMF) stratified by JAK2 mutational, JAK2 46/1 haplotype or cytogenetic status

Variables N IDH mutated (IDH1 or IDH2), n (%) P-value

Chronic-phase PMF (JAK2V617F mutated vs wild type) 166 (95 vs 71) 7 (4.2%) (2 (2.1%) vs 5 (7%)) 0.12
Blast-phase PMF (JAK2V617F mutated vs wild type) 27 (13 vs 14) 8 (30%) (4 (31%) vs 4 (29%)) 0.9
Chronic-phase PMF (JAK2 46/1 nullizygous vs not nullizygous) 158 (55 vs 103) 7 (4.4%) (5 (9%) vs 2 (1.9%)) 0.04
Blast-phase PMF (JAK2 46/1 nullizygous vs not nullizygous) 23 (8 vs 15) 8 (35%) (5 (63%) vs 3 (20%)) 0.04
Chronic-phase PMF karyotype at diagnosis (high-risk karyotype
vs not high-risk)

111 (13 vs 98) 7 (6.3%) (0 (0%) vs 7 (7.1%)) 0.32

Blast-phase PMF karyotype at transformation (complex karyotype
vs not complex)

22 (11 vs 11) 7 (32%) (0 vs 7 (64%)) 0.001

Abbreviations: IDH, isocitrate dehydrogenase; N, number of patients evaluable; PMF, primary myelofibrosis.
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cohort (Figure 4; n¼ 43; P¼ 0.01). In this instance, significance
was sustained during multivariable analysis that included
JAK2 46/1 haplotype as a covariate.

Discussion

IDH1 point mutations involving exon 4 occur in the majority
(60–90%) of patients with low-grade gliomas and secondary
glioblastomas, and always affect the amino acid arginine at
position 132 (B93% R132H, 4% R132C, 2% R132S and o1%
R132G, R132L or R132V).8,22,23 These mutations are relatively
infrequent in primary glioblastoma (B7%)22 and are usually not
seen in other solid tumors.23,24 A small fraction (B4%) of
glioma-associated IDH mutations involves IDH2, specifically
the R132 analogous R172 residue on exon 4 (R172K, R172M,
R172G, R172W).23,25 IDH mutations in glioma are hetero-
zygous, believed to constitute early genetic events and might be
mutually exclusive of EGFR and PTEN, but not TP53 mutations.
Clinical correlates of IDH mutations in glioma include younger
age, longer survival and reduced risk of disease progression after
conventional therapy.8,22,23,26,27

The first study on IDH mutations in AML included 188
patients with primary AML and reported IDH1, but not IDH2,
mutations in 8.5% (n¼ 16) of the cases and 16% of those with
normal karyotype: R132C in 8 patients, R132H in 7 and R132S
in 1.14 In a subsequent AML study of 493 patients,28 27 (5.5%)
expressed IDH1 mutations (37% R132C, 26% R132H, 19%

R132S, 15% R132G and 4% R132L). In both studies,14,28 IDH1
mutations clustered with normal karyotype, NPM1 mutations
and trisomy 8. IDH1 mutations are rare in pediatric AML.29

More recently, IDH2 mutations, affecting R172 (R172K)12,13 or
R140 (R140Q),13 were also shown to occur in primary
AML.12,13 In one of these studies, IDH1 or IDH2 mutations
were seen in 18 (23%) of 78 AML cases and the majority of the
mutations (12 of 18) involved IDH2, primarily R140Q.13 In
general, survival in primary AML did not seem to be affected by
the presence of IDH mutations.13,14,28–30 However, more recent
studies suggest that specific IDH mutation variants might be
prognostically relevant in certain molecular subsets of AML.31

The first reports of IDH mutations in MPN came from
three independent groups.9,32,33 In one of these studies, IDH1
mutations were seen in B8% (5 of 63) of blast-phase MPN
patients, mostly occurring in the absence of TET2 and ASXL1
mutations.32 The second study was focused on blast-phase MPN
that arose from JAK2-mutated chronic-phase MPN.33 In this
study, mutant IDH was seen in 5 (31%) of 16 blast-phase MPN
(three cases with R132C and two with R140Q) and in none of
the 180 PV or ET patients.33 The third study from the Mayo
Clinic included 200 MPN patients and showed IDH mutational
frequencies of B21% for blast-phase MPN, regardless of JAK2
mutational status, and B4% for PMF.9 The specific IDH1
mutations found in the particular study included R132C and
R132S and the IDH2 mutations R140Q and R140W.

The current study is an extension of the above-mentioned
Mayo Clinic study and involves a large number of patients
(n¼ 1473) recruited from three major MPN centers of excel-
lence. The results of the study clarify a number of issues
regarding IDH mutations in MPN. First, the study provides
robust incidence figures for IDH1 and IDH2 mutations across
different disease stages of specific MPN variants. Accordingly,
we now show that both IDH1 and IDH2 mutations can occur in
chronic-phase ET, PV or PMF, although infrequently. Mutational
frequency was equally low in post-PV/ET MF and this fact
combined with the significantly higher mutation incidence
observed in blast-phase disease suggests a pathogenetic
contribution to leukemic but not fibrotic disease transformation.
Two additional observations support this contention (i) complex
karyotype was infrequently encountered in IDH-mutated blast-
phase MPN, which suggests an independent pathogenetic
contribution that might be tied to distinct molecular alterations,
such as, for example, overexpression of the APP (amyloid â (A4)
precursor protein) gene, which has previously been shown in
AML to be associated with either complex karyotype or
IDHR172 mutation31 and (ii) the absence of mutual exclusivity
between IDH and other MPN-associated mutations (for exam-
ple, TET2, MPL), which is consistent with the suggestion that
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the former are later-arising cooperating mutations that are
more involved in disease progression rather than disease
initiation.

The types of IDH mutations seen in our patients with MPN
(mostly IDH2R140Q and IDH1R132S/C) are distinctly different
than those seen in gliomas (mostly IDH1R132H) and more
similar to those seen in AML, although IDH1R132H was
significantly more prevalent in AML. Within the context of
MPN, IDH2R140Q was over represented in chronic-phase ET
and PV, whereas IDH1 mutations were more prevalent in PMF
and blast-phase MPN. More studies are needed to confirm this
apparent trend. Regardless, there is currently no good explana-
tion for the observed diversity in IDH mutation variants among
gliomas and myeloid malignancies and current information
suggests similar biological consequences.13 Whether or not
different IDH mutations carry different prognostic relevance in
MPN is currently not known and we did not attempt to address
the particular issue because of our relatively small number of
informative cases. Of note, in a recent study of primary AML
with normal karyotype, different types of IDH mutations
appeared to variably influence disease-free survival and
complete remission rates.31

One particularly interesting observation from the current
study was the significant association between mutant IDH and
JAK2 non-46/1 haplotype. The latter phenomenon is further
evidence for the JAK2 mutation specificity of the previously
described association between the JAK2 46/1 haplotype and
MPN.19,34,35 In other words, whereas JAK2 exon 1419,35 or exon
1236 mutations have been shown to be associated with JAK2
46/1 haplotype, we did not see the same effect involving MPL
mutations34 (although others have shown otherwise),37 and now
show an association with JAK2 non-46/1 haplotype for IDH
mutations. This latter observation is also consistent with our
previous report on the prognostically detrimental effect of
JAK2 non-46/1 haplotype in PMF;19 it is possible that patients
with PMF who are nullizygous for JAK2 46/1 haplotype are
susceptible to additional adverse molecular events, such as IDH
mutations, which might lead to biologically more aggressive
disease. Consistent with this possible scenario, in the current
study, the negative prognostic impact of mutant IDH was
accounted for by the JAK2 46/1 genotype in PMF but not in
blast-phase MPN, in which risk factors other than JAK2 non-46/1
haplotype might have promoted the development of IDH
mutations.

It is becoming increasingly evident that there are many more
mutations than JAK2 and MPL mutations in BCR–ABL1-negative
MPN including those that involve TET2,38,39 ASXL1,40

IDH1,32,33 IDH2,9,33 CBL,41 IKZF142 and LNK.43 Some of these
mutations might be later-arising and more prevalent in blast-
phase disease. What is currently lacking is a composite
evaluation (that is, concurrent analysis of all relevant mutations),
which includes paired chronic- and blast-phase samples of a
large number of patients with blast-phase MPN. Such an
approach is essential for clarifying the individual pathogenetic
or prognostic contribution of the aforementioned mutations and
their chronological order of appearance. It is very likely that
additional mutations in MPN will be described soon, but
practical relevance in terms of either disease prognostication or
value as drug targets has so far been limited.
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