Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular Targets for Therapy

Selective FLT3 inhibitor FI-700 neutralizes Mcl-1 and enhances p53-mediated apoptosis in AML cells with activating mutations of FLT3 through Mcl-1/Noxa axis

Abstract

Treatment using Fms-like tyrosine kinase-3 (FLT3) inhibitors is a promising approach to overcome the dismal prognosis of acute myeloid leukemia (AML) with activating FLT3 mutations. Current trials are combining FLT3 inhibitors with p53-activating conventional chemotherapy. The mechanisms of cytotoxicity of FLT3 inhibitors are poorly understood. We investigated the interaction of FLT3 and p53 pathways after their simultaneous blockade using the selective FLT3 inhibitor FI-700 and the MDM2 inhibitor Nutlin-3 in AML. We found that FI-700 immediately reduced antiapoptotic Mcl-1 levels and enhanced Nutlin-induced p53-mediated mitochondrial apoptosis in FLT3/internal tandem duplication cells through the Mcl-1/Noxa axis. FI-700 induced proteasome-mediated degradation of Mcl-1, resulting in the reduced ability of Mcl-1 to sequester proapoptotic Bim. Nutlin-3 induced Noxa, which displaced Bim from Mcl-1. The FI-700/Nutlin-3 combination profoundly activated Bax and induced apoptosis. Our findings suggest that FI-700 actively enhances p53 signaling toward mitochondrial apoptosis and that a combination strategy aimed at inhibiting FLT3 and activating p53 signaling could potentially be effective in AML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Stirewalt DL, Radich JP . The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer 2003; 3: 650–665.

    Article  CAS  Google Scholar 

  2. Nakao M, Yokota S, Iwai T, Kaneko H, Horiike S, Kashima K et al. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia 1996; 10: 1911–1918.

    CAS  Google Scholar 

  3. Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, Miyawaki S et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 2001; 97: 2434–2439.

    Article  CAS  Google Scholar 

  4. Yanada M, Matsuo K, Suzuki T, Kiyoi H, Naoe T . Prognostic significance of FLT3 internal tandem duplication and tyrosine kinase domain mutations for acute myeloid leukemia: a meta-analysis. Leukemia 2005; 19: 1345–1349.

    Article  CAS  Google Scholar 

  5. Whitman SP, Ruppert AS, Radmacher MD, Mrózek K, Paschka P, Langer C et al. FLT3 D835/I836 mutations are associated with poor disease-free survival and a distinct gene-expression signature among younger adults with de novo cytogenetically normal acute myeloid leukemia lacking FLT3 internal tandem duplications. Blood 2008; 111: 1552–1559.

    Article  CAS  Google Scholar 

  6. Radomska HS, Bassères DS, Zheng R, Zhang P, Dayaram T, Yamamoto Y et al. Block of C/EBP alpha function by phosphorylation in acute myeloid leukemia with FLT3 activating mutations. J Exp Med 2006; 203: 371–381.

    Article  CAS  Google Scholar 

  7. Mizuki M, Fenski R, Halfter H, Matsumura I, Schmidt R, Müller C et al. Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways. Blood 2000; 96: 3907–3914.

    CAS  Google Scholar 

  8. Choudhary C, Brandts C, Schwable J, Tickenbrock L, Sargin B, Ueker A et al. Activation mechanisms of STAT5 by oncogenic Flt3-ITD. Blood 2007; 110: 370–374.

    Article  CAS  Google Scholar 

  9. Shimamura A, Ballif BA, Richards SA, Blenis J . Rsk1 mediates a MEK-MAP kinase cell survival signal. Curr Biol 2000; 10: 127–135.

    Article  CAS  Google Scholar 

  10. Rosa Santos SC, Dumon S, Mayeux P, Gisselbrecht S, Gouilleux F . Cooperation between STAT5 and phosphatidylinositol 3-kinase in the IL-3-dependent survival of a bone marrow derived cell line. Oncogene 2000; 19: 1164–1172.

    Article  CAS  Google Scholar 

  11. Warr MR, Shore GC . Unique biology of Mcl-1: therapeutic opportunities in cancer. Curr Mol Med 2008; 8: 138–147.

    Article  CAS  Google Scholar 

  12. Aichberger KJ, Mayerhofer M, Krauth MT, Skvara H, Florian S, Sonneck K et al. Identification of mcl-1 as a BCR/ABL-dependent target in chronic myeloid leukemia (CML): evidence for cooperative antileukemic effects of imatinib and mcl-1 antisense oligonucleotides. Blood 2005; 105: 3303–3311.

    Article  CAS  Google Scholar 

  13. Kuo ML, Chuang SE, Lin MT, Yang SY . The involvement of PI3-K/Akt-dependent up-regulation of Mcl-1 in the prevention of apoptosis of Hep3B cells by interleukin-6. Oncogene 2001; 20: 677–685.

    Article  CAS  Google Scholar 

  14. Maurer U, Charvet C, Wagman AS, Dejardin E, Green DR . Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1. Mol Cell 2006; 21: 749–760.

    Article  CAS  Google Scholar 

  15. Kiyoi H, Shiotsu Y, Ozeki K, Yamaji S, Kosugi H, Umehara H et al. A novel FLT3 inhibitor FI-700 selectively suppresses the growth of leukemia cells with FLT3 mutations. Clin Cancer Res 2007; 13: 4575–4582.

    Article  CAS  Google Scholar 

  16. Weisberg E, Roesel J, Bold G, Furet P, Jiang J, Cools J et al. Anti-leukemic effects of the novel, mutant FLT3 inhibitor, NVP-AST487: effects on PKC412-sensitive and -resistant FLT3-expressing cells. Blood 2008; 112: 5161–5170.

    Article  CAS  Google Scholar 

  17. Zhang W, Konopleva M, Shi YX, McQueen T, Harris D, Ling X et al. Mutant FLT3: a direct target of sorafenib in acute myelogenous leukemia. J Natl Cancer Inst 2008; 100: 184–198.

    Article  CAS  Google Scholar 

  18. Smith BD, Levis M, Beran M, Giles F, Kantarjian H, Berg K et al. Single-agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. Blood 2004; 103: 3669–3676.

    Article  CAS  Google Scholar 

  19. Stone RM, DeAngelo DJ, Klimek V, Galinsky I, Estey E, Nimer SD et al. Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood 2005; 105: 54–60.

    Article  CAS  Google Scholar 

  20. Fiedler W, Serve H, Döhner H, Schwittay M, Ottmann OG, O'Farrell AM et al. A phase 1 study of SU11248 in the treatment of patients with refractory or resistant acute myeloid leukemia (AML) or not amenable to conventional therapy for the disease. Blood 2005; 105: 986–993.

    Article  CAS  Google Scholar 

  21. DeAngelo DJ, Stone RM, Heaney ML, Nimer SD, Paquette RL, Klisovic RB et al. Phase 1 clinical results with tandutinib (MLN518), a novel FLT3 antagonist, in patients with acute myelogenous leukemia or high-risk myelodysplastic syndrome: safety, pharmacokinetics, and pharmacodynamics. Blood 2006; 108: 3674–3681.

    Article  CAS  Google Scholar 

  22. Hollstein M, Sidransky D, Vogelstein B, Harris CC . p53 mutations in human cancers. Science 1991; 253: 49–53.

    Article  CAS  Google Scholar 

  23. Kojima K, Konopleva M, Samudio IJ, Shikami M, Cabreira-Hansen M, McQueen T et al. MDM2 antagonists induce p53-dependent apoptosis in AML: implications for leukemia therapy. Blood 2005; 106: 3150–3159.

    Article  CAS  Google Scholar 

  24. Michael D, Oren M . The p53-Mdm2 module and the ubiquitin system. Semin Cancer Biol 2003; 13: 49–58.

    Article  CAS  Google Scholar 

  25. Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004; 303: 844–848.

    Article  CAS  Google Scholar 

  26. Chipuk JE, Green DR . Dissecting p53-dependent apoptosis. Cell Death Differ 2006; 13: 994–1002.

    Article  CAS  Google Scholar 

  27. Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P et al. p53 has a direct apoptogenic role at the mitochondria. Mol Cell 2003; 11: 577–590.

    Article  CAS  Google Scholar 

  28. Quentmeier H, Reinhardt J, Zaborski M, Drexler HG . FLT3 mutations in acute myeloid leukemia cell lines. Leukemia 2003; 17: 120–124.

    Article  CAS  Google Scholar 

  29. Levis M, Murphy KM, Pham R, Kim KT, Stine A, Li L et al. Internal tandem duplications of the FLT3 gene are present in leukemia stem cells. Blood 2005; 106: 673–680.

    Article  CAS  Google Scholar 

  30. Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P et al. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat 2007; 28: 622–629.

    Article  CAS  Google Scholar 

  31. Kojima K, Konopleva M, Tsao T, Nakakuma H, Andreeff M . Concomitant inhibition of Mdm2-p53 interaction and Aurora kinases activates the p53-dependent postmitotic checkpoints and synergistically induces p53-mediated mitochondrial apoptosis along with reduced endoreduplication in acute myelogenous leukemia. Blood 2008; 112: 2886–2895.

    Article  CAS  Google Scholar 

  32. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 2005; 435: 677–681.

    Article  CAS  Google Scholar 

  33. Kohl TM, Hellinger C, Ahmed F, Buske C, Hiddemann W, Bohlander SK et al. BH3 mimetic ABT-737 neutralizes resistance to FLT3 inhibitor treatment mediated by FLT3-independent expression of BCL2 in primary AML blasts. Leukemia 2007; 21: 1763–1772.

    Article  CAS  Google Scholar 

  34. Heidel FH, Schulze-Bergkamen H, Vick B, Lipka DB, Mirea FK, Urbanik T et al. The role of Mcl-1 expression and phosphorylation in resistance to chemotherapy and kinase inhibitors in FLT3-ITD-positive acute myeloid leukemia (AML). Blood 2008; 112: 88 (abstract 220).

    Google Scholar 

  35. Czabotar PE, Lee EF, van Delft MF, Day CL, Smith BJ, Huang DC et al. Structural insights into the degradation of Mcl-1 induced by BH3 domains. Proc Natl Acad Sci USA 2007; 104: 6217–6222.

    Article  CAS  Google Scholar 

  36. Saddler C, Ouillette P, Kujawski L, Shangary S, Talpaz M, Kaminski M et al. Comprehensive biomarker and genomic analysis identifies p53 status as the major determinant of response to MDM2 inhibitors in chronic lymphocytic leukemia. Blood 2008; 111: 1584–1593.

    Article  CAS  Google Scholar 

  37. Breitenbuecher F, Markova B, Kasper S, Carius B, Stauder T, Bohmer FD et al. A novel molecular mechanism of primary resistance to FLT3-kinase inhibitors in acute myeloid leukemia. Blood 2009; 113: 4063–4073.

    Article  CAS  Google Scholar 

  38. Han J, Goldstein LA, Hou W, Rabinowich H . Functional linkage between NOXA and Bim in mitochondrial apoptotic events. J Biol Chem 2007; 282: 16223–16231.

    Article  CAS  Google Scholar 

  39. Certo M, Del Gaizo Moore V, Nishino M, Wei G, Korsmeyer S, Armstrong SA et al. Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 2006; 9: 351–365.

    Article  CAS  Google Scholar 

  40. Zhong Q, Gao W, Du F, Wang X . Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis. Cell 2005; 121: 1085–1095.

    Article  CAS  Google Scholar 

  41. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 2005; 435: 677–681.

    Article  CAS  Google Scholar 

  42. van Delft MF, Wei AH, Mason KD, Vandenberg CJ, Chen L, Czabotar PE et al. The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell 2006; 10: 389–399.

    Article  CAS  Google Scholar 

  43. Konopleva M, Contractor R, Tsao T, Samudio I, Ruvolo PP, Kitada S et al. Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell 2006; 10: 375–388.

    Article  CAS  Google Scholar 

  44. Stone RM, DeAngelo DJ, Klimek V, Galinsky I, Estey E, Nimer SD et al. Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood 2005; 105: 54–60.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Maria Soengas, Department of Dermatology, University of Michigan, Ann Arbor, MI, USA, for providing lentivirus encoding Noxa-specific shRNA. KK was supported, in part, by grants from the Yasuda Medical Foundation and the Japan Leukemia Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Kojima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kojima, K., Konopleva, M., Tsao, T. et al. Selective FLT3 inhibitor FI-700 neutralizes Mcl-1 and enhances p53-mediated apoptosis in AML cells with activating mutations of FLT3 through Mcl-1/Noxa axis. Leukemia 24, 33–43 (2010). https://doi.org/10.1038/leu.2009.212

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.212

Keywords

This article is cited by

Search

Quick links