Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Carotid atherosclerosis in elderly hypertensive patients: potential role of endothelin and plasma antioxidant capacity

Abstract

Endothelin-1 (ET-1) and oxidative stress are involved in the development of hypertension-induced cardiovascular complications. The aim of this study was to evaluate the relationship between plasma ET-1 level and plasma antioxidant capacity and carotid atherosclerosis. In 61 treated patients with hypertension (44 women, 35 diabetics, mean age 72.4±7.2 years) medical histories, ambulatory blood pressure, blood tests (glucose, creatinine, cholesterol, haemoglobin A1c (HbA1c), ET-1) and common carotid artery intima–media thickness (CCA-IMT) measurement were carried out. Plasma antioxidant capacity was assessed by the ferric-reducing ability of plasma (FRAP). Subjects with diabetes presented with higher concentrations of glucose (7.01±2.3 vs 5.14±0.6 mmol l−1, P<0.001), HbA1c (7.75±2.1 vs 6.1±1.2%, P<0.001) and ET-1 (1.36±0.53 vs 1.01±0.4 pg ml−1, P<0.01), and lower cholesterol level (5.02±0.8 vs 5.86±1.3 mmol l−1, P<0.01). A significant positive correlation between CCA-IMT and ET-1 plasma concentration (r=0.40, P<0.001) and reverse relationship between CCA-IMT and FRAP (r=−0.36, P<0.01) was observed. In a stepwise regression analysis, after adjustment for all confounders, CCA-IMT was independently influenced by age, systolic blood pressure (SBP), HbA1c and ET-1. When FRAP was included in the regression model, CCA-IMT was significantly influenced by age, FRAP, HbA1c and SBP. ET-1 promotes the increase in CCA-IMT contributing to the development of end-organ damage. Plasma antioxidant capacity may modulate this deleterious effect, but whether better antioxidant defence may prevent against the development of atherosclerosis remains to be elucidated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Haynes WG, Webb DJ . Endothelin as a regulator of cardiovascular function in health and disease. J Hypertens 1998; 16: 1081–1098.

    Article  CAS  Google Scholar 

  2. Taddei S, Viridis A, Ghiadoni L, Sudano I, Magagna A, Salvetti A . Role of endothelin in the control of peripheral vascular tone in human hypertension. Heart Fail Rev 2001; 6: 277–285.

    Article  CAS  Google Scholar 

  3. Iglarz M, Clozel M . Mechanisms of ET-1-induced endothelial dysfunction. J Cardiovasc Pharmacol 2007; 50: 621–628.

    Article  CAS  Google Scholar 

  4. d’Uscio LV, Barton M, Shaw S, Lüscher TF . Endothelin in atherosclerosis: importance of risk factors and therapeutic implications. J Cardiovasc Pharmacol 2000; 35 (Suppl 2): S55–S59.

    Article  Google Scholar 

  5. Vanhoutte PM, Shimokawa H, Tang EHC, Feletou M . Endothelial dysfunction and vascular disease. Acta Physiol 2009; 196: 193–222.

    Article  CAS  Google Scholar 

  6. Yoshizumi M, Kim S, Kagami S, Hamaguchi A, Tsuchiya K, Houchi H et al. Effect of endothelin-1 (1–31) on extracellular signal-regulated kinase and proliferation of human coronary artery smooth muscle cells. Br J Pharmacol 1998; 125: 1019–1027.

    Article  CAS  Google Scholar 

  7. Chen S, Khan ZA, Karmazyn M, Chakrabarti S . Role of endothelin-1, sodium hydrogen exchanger-1 and mitogen activated protein kinase (MAPK) activation in glucose-induced cardiomyocyte hypertrophy. Diabetes Metab Res Rev 2007; 23: 356–367.

    Article  Google Scholar 

  8. Cheng TH, Shih NL, Chen CH, Lin H, Liu JC, Chao HH et al. Role of mitogen-activated protein kinase pathway in reactive oxygen species-mediated endothelin-1-induced beta-myosin heavy chain gene expression and cardiomyocyte hypertrophy. J Biomed Sci 2005; 12: 123–133.

    Article  CAS  Google Scholar 

  9. Motte S, McEntee K, Naeije R . Endothelin receptor antagonists. Pharmacol Ther 2006; 110: 386–414.

    Article  CAS  Google Scholar 

  10. Böhm F, Ahlborg G, Johansson BL, Hansson LO, Pernow J . Combined endothelin receptor blockade evokes enhanced vasodilatation in patients with atherosclerosis. Arterioscler Thromb Vasc Biol 2002; 2: 674–679.

    Article  Google Scholar 

  11. Barton M, Haudenschild CC, d’Uscio LV, Shaw S, Münter K, Lüscher TF . Endothelin ETA receptor blockade restores NO-mediated endothelial function and inhibits atherosclerosis in apolipoprotein E-deficient mice. Proc Natl Acad Sci USA 1998; 24: 14367–14372.

    Article  Google Scholar 

  12. Amiri F, Viridis A, Neves MF, Iglarz M, Seidah NG, Touyz RM et al. Endothelium-restricted overexpression of human endothelin-1 causes vascular remodeling and endothelial dysfunction. Circulation 2004; 110: 2233–2240.

    Article  CAS  Google Scholar 

  13. Li L, Fink GD, Watts SW, Northcott CA, Galligan JJ, Pagano PJ et al. Endothelin-1 increases vascular superoxide via endothelin A-NADPH oxidase pathway in low-renin hypertension. Circulation 2003; 107: 1053–1058.

    Article  CAS  Google Scholar 

  14. Kähler J, Mendel S, Weckmüller J, Orzechowski HD, Mittmann C, Köster R et al. Oxidative stress increases synthesis of big endothelin-1 by activation of the endothelin-1 promoter. J Mol Cell Cardiol 2000; 32: 1429–1437.

    Article  Google Scholar 

  15. Kähler J, Ewert A, Weckmüller J, Stobbe S, Mittmann C, Köster R et al. Oxidative stress increases endothelin-1 synthesis in human coronary artery smooth muscle cells. J Cardiovacs Pharmacol 2001; 38: 49–57.

    Article  Google Scholar 

  16. Wedgwood S, Dettman R, Black SM . ET-1 stimulates pulmonary arterial smooth muscle cell proliferation via induction of reactive oxygen species. Am J Physiol Lung Cell Mol Physiol 2001; 281: L1058–L1067.

    Article  CAS  Google Scholar 

  17. Skalska A, Pietrzycka A, Stêpniewski M . Correlation of endothelin 1 plasma levels with plasma antioxidant capacity in elderly patients treated for hypertension. Clin Biochem 2009; 42: 358–364 (doi: 10.1016/j.clinbiochem.2008.11.002).

    Article  CAS  PubMed  Google Scholar 

  18. Benzie IFF, Strain JJ . The ferric reducing ability of plasma (FRAP) as a measure of ‘antioxidant power’: the FRAP assay. Anal Biochem 1996; 239: 70–76.

    Article  CAS  Google Scholar 

  19. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D et al. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Ann Int Med 1999; 130: 461–470.

    Article  CAS  Google Scholar 

  20. Katona E, Settakis G, Varga Z, Paragh G, Bereczki D, Fülesdi B et al. Target-organ damage in adolescent hypertension. Analysis of potential influencing factors, especially nitric oxide and endothelin-1. J Neurol Sci 2006; 247: 138–143.

    Article  CAS  Google Scholar 

  21. Orio Jr F, Palomba S, Cascella T, De Simone B, Di Biase S, Russo T et al. Early impairment of endothelial structure and function in young normal-weight women with polycystic ovary syndrome. J Clin Endocrinol Metab 2004; 89: 4588–4593.

    Article  CAS  Google Scholar 

  22. Migdalis IN, Kalogeropoulou K, Iiopoulou V, Varvarigos N, Karmaniolas KD, Mortzos G et al. Progression of carotid atherosclerosis and the role of endothelin in diabetic patients. Res Commun Mol Pathol Pharmacol 2000; 108: 27–37.

    CAS  PubMed  Google Scholar 

  23. Kalogeropoulou K, Mortzos G, Migdalis IN, Velentzas C, Mikhailidis DP, Georgiadis E et al. Carotid atherosclerosis in type 2 diabetes mellitus: potential role of endothelin-1, lipoperoxides, and prostacyclin. Angiology 2002; 53: 279–285.

    Article  CAS  Google Scholar 

  24. Minami S, Yamano S, Yamamoto Y, Sasaki R, Nakashima T, Takaoka M et al. Associations of plasma endothelin concentration with carotid atherosclerosis and asymptomatic cerebrovascular lesions in patients with essential hypertension. Hypertens Res 2001; 24: 663–670.

    Article  CAS  Google Scholar 

  25. Ihling Ch, Szombathy T, Bohrmann B, Brockhaus M, Schaefer HE, Loeffler BM . Coexpression of endothelin-converting enzyme-1 and endothelin-1 in different stages of human atherosclerosis. Circulation 2001; 104: 864–869.

    Article  CAS  Google Scholar 

  26. Kyaw M, Yoshizumi M, Tsuchiya K, Kirima K, Suzaki Y, Abe S et al. Antioxidant inhibit endothelin-1 (1–31)-induced proliferation of vascular smooth muscle cells via the inhibition of mitogen-activated protein (MAP) kinase and activator protein-1 (AP-1). Biochem Pharmacol 2002; 64: 1521–1531.

    Article  CAS  Google Scholar 

  27. Duerrschmidt N, Wippich N, Goettsch W, Broemme HJ, Morawietz H . Endothelin-1 induces NAD(P)H oxidase in human endothelial cells. Biochem Biophys Res Commun 2000; 269: 713–717.

    Article  CAS  Google Scholar 

  28. Böhm F, Settergren M, Pernow J . Vitamin C blocks vascular dysfunction and release of interleukin-6 induced by endothelin-1 in humans in vivo. Atherosclerosis 2007; 190: 408–415.

    Article  Google Scholar 

  29. Stocker R, Keaney Jr JF . Role of oxidative modification in atherosclerosis. Physiol Rev 2004; 84: 1381–1478.

    Article  CAS  Google Scholar 

  30. Chen X, Touyz RM, Park JB, Schiffrin EL . Antioxidant effects of vitamin C and E are associated with altered activation of vascular NADP oxidase and superoxide dismutase in stroke-prone SHR. Hypertension 2001; 38: 606–611.

    Article  CAS  Google Scholar 

  31. Lippi G, Montagnana M, Franchini M, Favaloro EJ, Targher G . The paradoxical relationship between serum uric acid and cardiovascular disease. Clin Chim Acta 2008; 392: 1–7.

    Article  CAS  Google Scholar 

  32. Feig DI, Kang DH, Johnson R . Uric acid and cardiovascular risk. N Engl J Med 2008; 359: 1811–1821.

    Article  CAS  Google Scholar 

  33. O’Leary DH, Polak JF, Kronmal RA, Kittner SJ, Bond MG, Wolfson SK et al. Distribution and correlates of sonographically detected carotid disease in the Cardiovascular Health Study. The CHS Collaborative Research Group. Stroke 1992; 23: 1752–1760.

    Article  Google Scholar 

  34. Rodrigo R, Prat H, Passalacqua W, Araya J, Guichard C, Bächler JP . Relationship between oxidative stress and essential hypertension. Hypertens Res 2007; 30: 1159–1167.

    Article  CAS  Google Scholar 

  35. McQuillan BM, Hung J, Beilby JP, Nidorf M, Thompson PL . Antioxidant vitamins and the risk of carotid atherosclerosis. The Perth Carotid Ultrasound Disease Assessment Study (CUDAS). J Am Coll Cardiol 2001; 38: 1788–1794.

    Article  CAS  Google Scholar 

  36. Gale CR, Ashurst HE, Powers HJ, Martyn ChN . Antioxidant vitamin status and carotid atherosclerosis in the elderly. Am J Clin Nutr 2001; 74: 402–408.

    Article  CAS  Google Scholar 

  37. Kritchevsky SB, Shimakawa T, Tell GS, Dennis B, Carpenter M, Eckfeldt JH et al. Dietary antioxidants and carotid artery wall thickness: the Atherosclerosis Risk in Communities (ARIC) Study. Circulation 1995; 92: 2142–2150.

    Article  CAS  Google Scholar 

  38. Bonithon-Kopp C, Coudray C, Berr C, Touboul PJ, Fève JM, Favier A et al. Combined effects of lipid peroxidation and antioxidant status on carotid atherosclerosis in a population aged 59–71 years: the Etude sur le Vieillisement Arteriel (EVA) study. Am J Clin Nutr 1997; 65: 121–127.

    Article  CAS  Google Scholar 

  39. Riccioni G, Bucciarelli T, D’Orazio N, Palumbo N, Di Ilio E, Corradi F et al. Plasma antioxidants and asymptomatic carotid atherosclerotic disease. Ann Nutr Metabol 2008; 53: 86–90.

    Article  CAS  Google Scholar 

  40. Suys B, de Beeck LO, Rooman R, Kransfeld S, Heuten H, Goovaerts I et al. Impact of oxidative stress on the endothelial dysfunction of children and adolescents with type I diabetes mellitus: protection by superoxide dismutase? Pediatr Res 2007; 62: 456–461.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A B Skalska.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skalska, A., Grodzicki, T. Carotid atherosclerosis in elderly hypertensive patients: potential role of endothelin and plasma antioxidant capacity. J Hum Hypertens 24, 538–544 (2010). https://doi.org/10.1038/jhh.2009.97

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jhh.2009.97

Keywords

This article is cited by

Search

Quick links