Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The pressure of finding human hypertension genes: new tools, old dilemmas

Abstract

Researchers in hypertension genetics feel like they are left behind again. It always seems that the ‘other’ complex diseases are ahead in the race. Evolving new technologies in the form of genome-wide arrays and ‘omics’ technologies mean that investigators can now potentially identify many novel disease factors in one large-scale experiment. Hypertension research now faces the challenge of where to go next after the first genome-wide association experiments failed to provide robust candidates. In this review, we contemplate the old dilemma of whether such genes may ever be found; however, we believe advancing technologies and plummeting costs of large-scale experiments will contribute to the identification of novel molecules that underlie essential hypertension.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kearney PM, Whelton M, Reynolds K, Whelton PK, He J . Worldwide prevalence of hypertension: a systematic review. J Hypertens 2004; 22: 11–19.

    Article  CAS  Google Scholar 

  2. Jones DW, Hall JE . World Hypertension Day 2007. Hypertension 2007; 49: 939–940.

    Article  CAS  Google Scholar 

  3. Lifton RP, Gharavi AG, Geller DS . Molecular mechanisms of human hypertension. Cell 2001; 104: 545–556.

    Article  CAS  Google Scholar 

  4. Ward R . Familial aggregation and genetic epidemiology of blood pressure. In Laragh JH, Benner BM (eds). Hypertension: Pathophysiology, Diagnosis and Management. Raven Press: New York, 1995, pp 67–88.

    Google Scholar 

  5. Hong Y, de Faire U, Heller DA, McClearn GE, Pedersen N . Genetic and environmental influences on blood pressure in elderly twins. Hypertension 1994; 24: 663–670.

    Article  CAS  Google Scholar 

  6. Cowley Jr AW . The genetic dissection of essential hypertension. Nat Rev Genet 2006; 7: 829–840.

    Article  CAS  Google Scholar 

  7. Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, Mayer B et al. Genomewide association analysis of coronary artery disease. N Engl J Med 2007; 357: 443–453.

    Article  CAS  Google Scholar 

  8. Caulfield M, Munroe P, Pembroke J, Samani N, Dominiczak A, Brown M et al. Genome-wide mapping of human loci for essential hypertension. Lancet 2003; 361: 2118–2123.

    Article  CAS  Google Scholar 

  9. Province MA, Kardia SL, Ranade K, Rao DC, Thiel BA, Cooper RS et al. A meta-analysis of genome-wide linkage scans for hypertension: the National Heart, Lung and Blood Institute Family Blood Pressure Program. Am J Hypertens 2003; 16: 144–147.

    Article  Google Scholar 

  10. Munroe PB, Wallace C, Xue MZ, Marcano AC, Dobson RJ, Onipinla AK et al. Increased support for linkage of a novel locus on chromosome 5q13 for essential hypertension in the British Genetics of Hypertension Study. Hypertension 2006; 48: 105–111.

    Article  CAS  Google Scholar 

  11. Wallace C, Xue MZ, Newhouse SJ, Marcano AC, Onipinla AK, Burke B et al. Linkage analysis using co-phenotypes in the BRIGHT study reveals novel potential susceptibility loci for hypertension. Am J Hum Genet 2006; 79: 323–331.

    Article  CAS  Google Scholar 

  12. Liu W, Zhao W, Chase GA . Genome scan meta-analysis for hypertension. Am J Hypertens 2004; 17 (12 Part 1): 1100–1106.

    Article  CAS  Google Scholar 

  13. Tomaszewski M, Brain NJ, Charchar FJ, Wang WY, Lacka B, Padmanabahn S et al. Essential hypertension and beta2-adrenergic receptor gene: linkage and association analysis. Hypertension 2002; 40: 286–291.

    Article  CAS  Google Scholar 

  14. Tomaszewski M, Charchar FJ, Lynch MD, Padmanabhan S, Wang WY, Miller WH et al. Fibroblast growth factor 1 gene and hypertension: from the quantitative trait locus to positional analysis. Circulation 2007; 116: 1915–1924.

    Article  CAS  Google Scholar 

  15. Marteau JB, Zaiou M, Siest G, Visvikis-Siest S . Genetic determinants of blood pressure regulation. J Hypertens 2005; 23: 2127–2143.

    Article  CAS  Google Scholar 

  16. Agarwal A, Williams GH, Fisher ND . Genetics of human hypertension. Trends Endocrinol Metab 2005; 16: 127–133.

    Article  CAS  Google Scholar 

  17. Todd JA, Walker NM, Cooper JD, Smyth DJ, Downes K, Plagnol V et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet 2007; 39: 857–864.

    Article  CAS  Google Scholar 

  18. Ioannidis JP, Boffetta P, Little J, O'Brien TR, Uitterlinden AG, Vineis P et al. Assessment of cumulative evidence on genetic associations: interim guidelines. Int J Epidemiol 2008; 37: 120–132.

    Article  Google Scholar 

  19. Consortium TH . A haplotype map of the human genome. Nature 2005; 437: 1299–1320.

    Article  Google Scholar 

  20. Consortium, Wellcome Trust Case Control. Genome-wide association study of 14 000 cases of seven common diseases and 3000 shared controls. Nature 2007; 447: 661–678.

    Article  Google Scholar 

  21. Levy D, Larson MG, Benjamin EJ, Newton-Cheh C, Wang TJ, Hwang SJ et al. Framingham Heart Study 100 K Project: genome-wide associations for blood pressure and arterial stiffness. BMC Med Genet 2007; 8 (Suppl 1): S3.

    Article  Google Scholar 

  22. Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, Chen H et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 2007; 316: 1331–1336.

    Article  CAS  Google Scholar 

  23. McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JP et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 2008; 9: 356–369.

    Article  CAS  Google Scholar 

  24. Scriver CR . After the genome—the phenome? J Inherit Metab Dis 2004; 27: 305–317.

    Article  CAS  Google Scholar 

  25. Tomaszewski M, Brain NJR, Charchar FJ, Dominiczak AF . Genetics of human essential hypertension—from single mutations to quantitative trait loci. In: Re R, Di Pette D, Schiffrin E, Sowers JR (eds). Abingdon, Taylor and Francis Group, 2006, pp 241–248.

  26. Doris PA . Hypertension genetics, single nucleotide polymorphisms, and the common disease:common variant hypothesis. Hypertension 2002; 39 (2 Part 2): 323–331.

    Article  CAS  Google Scholar 

  27. Levy D, DeStefano AL, Larson MG, O'Donnell CJ, Lifton RP, Gavras H et al. Evidence for a gene influencing blood pressure on chromosome 17. Genome scan linkage results for longitudinal blood pressure phenotypes in subjects from the Framingham heart study. Hypertension 2000; 36: 477–483.

    Article  CAS  Google Scholar 

  28. Ji W, Foo JN, O'Roak BJ, Zhao H, Larson MG, Simon DB et al. Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nat Genet 2008; 40: 592–599.

    Article  CAS  Google Scholar 

  29. Brudno M, Poliakov A, Minovitsky S, Ratnere I, Dubchak I . Multiple whole genome alignments and novel biomedical applications at the VISTA portal. Nucleic Acids Res 2007; 35 (Web Server issue): W669–W674.

    Article  Google Scholar 

  30. Wang P, Dai M, Xuan W, McEachin RC, Jackson AU, Scott LJ et al. SNP function portal: a web database for exploring the function implication of SNP alleles. Bioinformatics 2006; 22: e523–e529.

    Article  CAS  Google Scholar 

  31. Arnett DK, Baird AE, Barkley RA, Basson CT, Boerwinkle E, Ganesh SK et al. Relevance of genetics and genomics for prevention and treatment of cardiovascular disease: a scientific statement from the American Heart Association Council on Epidemiology and Prevention, the Stroke Council, and the Functional Genomics and Translational Biology Interdisciplinary Working Group. Circulation 2007; 115: 2878–2901.

    Article  Google Scholar 

  32. Turner ST, Boerwinkle E . Genetics of hypertension, target-organ complications, and response to therapy. Circulation 2000; 102 (20 Suppl 4): IV40–IV45.

    CAS  PubMed  Google Scholar 

  33. Pollex RL, Hegele RA . Copy number variation in the human genome and its implications for cardiovascular disease. Circulation 2007; 115: 3130–3138.

    Article  Google Scholar 

  34. Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD et al. Global variation in copy number in the human genome. Nature 2006; 444: 444–454.

    Article  CAS  Google Scholar 

  35. Aitman TJ, Dong R, Vyse TJ, Norsworthy PJ, Johnson MD, Smith J et al. Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans. Nature 2006; 439: 851–855.

    Article  CAS  Google Scholar 

  36. Brasier JL, Henske EP . Loss of the polycystic kidney disease (PKD1) region of chromosome 16p13 in renal cyst cells supports a loss-of-function model for cyst pathogenesis. J Clin Invest 1997; 99: 194–199.

    Article  CAS  Google Scholar 

  37. Tomaszewski M, Zimmerli L, Charchar FJ, Dominiczak AF . Genetic information in the diagnosis and treatment of hypertension. Curr Hypertens Rep 2006; 8: 309–316.

    Article  CAS  Google Scholar 

  38. Kapranov P, Drenkow J, Cheng J, Long J, Helt G, Dike S et al. Examples of the complex architecture of the human transcriptome revealed by RACE and high-density tiling arrays. Genome Res 2005; 15: 987–997.

    Article  CAS  Google Scholar 

  39. Mann DL . MicroRNAs and the failing heart. N Engl J Med 2007; 356: 2644–2645.

    Article  CAS  Google Scholar 

  40. John M, Constien R, Akinc A, Goldberg M, Moon YA, Spranger M et al. Effective RNAi-mediated gene silencing without interruption of the endogenous microRNA pathway. Nature 2007; 449: 745–747.

    Article  CAS  Google Scholar 

  41. Loscalzo J . Proteomics in cardiovascular biology and medicine. Circulation 2003; 108: 380–383.

    Article  Google Scholar 

  42. Kenyon GL, DeMarini DM, Fuchs E, Galas DJ, Kirsch JF, Leyh TS et al. Defining the mandate of proteomics in the post-genomics era: workshop report. Mol Cell Proteomics 2002; 1: 763–780.

    CAS  PubMed  Google Scholar 

  43. O'Farrell PH . High resolution two-dimensional electrophoresis of proteins. J Biol Chem 1975; 250: 4007–4021.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kolch W, Mischak H, Chalmers MJ, Pitt A, Marshall AG . Clinical proteomics: a question of technology. Rapid Commun Mass Spectrom 2004; 18: 2365–2366.

    Article  CAS  Google Scholar 

  45. Duran MC, Martin-Ventura JL, Mas S, Barderas MG, Darde VM, Jensen ON et al. Characterization of the human atheroma plaque secretome by proteomic analysis. Methods Mol Biol 2007; 357: 141–150.

    CAS  PubMed  Google Scholar 

  46. Sung HJ, Ryang YS, Jang SW, Lee CW, Han KH, Ko J . Proteomic analysis of differential protein expression in atherosclerosis. Biomarkers 2006; 11: 279–290.

    Article  CAS  Google Scholar 

  47. Vaisar T, Pennathur S, Green PS, Gharib SA, Hoofnagle AN, Cheung MC et al. Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL. J Clin Invest 2007; 117: 746–756.

    Article  CAS  Google Scholar 

  48. You SA, Archacki SR, Angheloiu G, Moravec CS, Rao S, Kinter M et al. Proteomic approach to coronary atherosclerosis shows ferritin light chain as a significant marker: evidence consistent with iron hypothesis in atherosclerosis. Physiol Genomics 2003; 13: 25–30.

    Article  CAS  Google Scholar 

  49. Berhane BT, Zong C, Liem DA, Huang A, Le S, Edmondson RD et al. Cardiovascular-related proteins identified in human plasma by the HUPO Plasma Proteome Project pilot phase. Proteomics 2005; 5: 3520–3530.

    Article  CAS  Google Scholar 

  50. Donahue MP, Rose K, Hochstrasser D, Vonderscher J, Grass P, Chibout SD et al. Discovery of proteins related to coronary artery disease using industrial-scale proteomics analysis of pooled plasma. Am Heart J 2006; 152: 478–485.

    Article  CAS  Google Scholar 

  51. Zimmerli LU, Schiffer E, Zurbig P, Good DM, Kellmann M, Mouls L et al. Urinary proteomic biomarkers in coronary artery disease. Mol Cell Proteomics 2008; 7: 290–298.

    Article  CAS  Google Scholar 

  52. Wu JS, Lu FH, Yang YC, Lin TS, Chen JJ, Wu CH et al. Epidemiological study on the effect of pre-hypertension and family history of hypertension on cardiac autonomic function. J Am Coll Cardiol 2008; 51: 1896–1901.

    Article  Google Scholar 

  53. Mayburd AL, Martlinez A, Sackett D, Liu H, Shih J, Tauler J et al. Ingenuity network-assisted transcription profiling: Identification of a new pharmacologic mechanism for MK886. Clin Cancer Res 2006; 12: 1820–1827.

    Article  CAS  Google Scholar 

  54. Davey Smith G, Ebrahim S, Lewis S, Hansell AL, Palmer LJ, Burton PR . Genetic epidemiology and public health: hope, hype, and future prospects. Lancet 2005; 366: 1484–1498.

    Article  Google Scholar 

  55. Loscalzo J . Association studies in an era of too much information: clinical analysis of new biomarker and genetic data. Circulation 2007; 116: 1866–1870.

    Article  Google Scholar 

Download references

Acknowledgements

FJC and MT are supported by British Heart Foundation Project Grant PG/06/097/21331 and NIH Fogarty International Research Collaboration Award (R03 TW007165).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F J Charchar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charchar, F., Zimmerli, L. & Tomaszewski, M. The pressure of finding human hypertension genes: new tools, old dilemmas. J Hum Hypertens 22, 821–828 (2008). https://doi.org/10.1038/jhh.2008.67

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jhh.2008.67

Keywords

This article is cited by

Search

Quick links