Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Epigenomics, gestational programming and risk of metabolic syndrome

Subjects

Abstract

Epigenetic mechanisms are emerging as mediators linking early environmental exposures during pregnancy with programmed changes in gene expression that alter offspring growth and development. There is irrefutable evidence from human and animal studies that nutrient and environmental agent exposures (for example, endocrine disruptors) during pregnancy may affect fetal/newborn development resulting in offspring obesity and obesity-associated metabolic abnormalities (metabolic syndrome). This concept of ‘gestational programming’ is associated with alterations to the epigenome (nongenomic) rather than changes in the DNA sequence (genomic). Epigenetic alterations induced by suboptimal maternal nutrition/endocrine factors include DNA methylation, histone modifications, chromatin remodeling and/or regulatory feedback by microRNAs, all of which have the ability to modulate gene expression and promote the metabolic syndrome phenotype. Recent studies have shown tissue-specific transcriptome patterns and phenotypes not only in the exposed individual, but also in subsequent progeny. Notably, the transmission of gestational programming effects to subsequent generations occurs in the absence of continued adverse environmental exposures, thus propagating the cycle of obesity and metabolic syndrome. This phenomenon may be attributed to an extrinsic process resulting from the maternal phenotype and the associated nutrient alterations occurring within each pregnancy. In addition, epigenetic inheritance may occur through somatic cells or through the germ line involving both maternal and paternal lineages. Since epigenetic gene modifications may be reversible, understanding how epigenetic mechanisms contribute to transgenerational transmission of obesity and metabolic dysfunction is crucial for the development of novel early detection and prevention strategies for programmed metabolic syndrome. In this review we discuss the evidence in human and animal studies for the role of epigenomic mechanisms in the transgenerational transmission of programmed obesity and metabolic syndrome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. James PT, Leach R, Kalamara E, Shayeghi M . The worldwide obesity epidemic. Obes Res 2001; 9: 228S–233S.

    PubMed  Google Scholar 

  2. Reilly MP, Rader DJ . The metabolic syndrome: more than the sum of its parts? Circulation 2003; 108: 1546–1551.

    PubMed  Google Scholar 

  3. Ogden CL, Fryar CD, Carroll MD, Flegal KM . Mean body weight, height, and body mass index, United States 1960-2002. Adv Data 2004; 347: 1–17.

    Google Scholar 

  4. Flegal KM, Carroll MD, Kit BK, Ogden CL . Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999-2010. JAMA 2012; 307: 491–497.

    Article  PubMed  Google Scholar 

  5. Beltrán-Sánchez H, Harhay MO, Harhay MM, McElligott S . Prevalence and trends of metabolic syndrome in the adult U.S. population, 1999-2010. J Am Coll Cardiol 2013; 62: 697–703.

    PubMed  PubMed Central  Google Scholar 

  6. Ogden CL, Carroll MD, Kit BK, Flegal KM . Prevalence of childhood and adult obesity in the United States, 2011-2012. JAMA 2014; 311: 806–814.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Surkan PJ, Hsieh CC, Johansson AL, Dickman PW, Cnattingius S . Reasons for increasing trends in large for gestational age births. Obstet Gynecol 2004; 104: 720–726.

    PubMed  Google Scholar 

  8. Ross MG, Desai M . Developmental programming of offspring obesity, adipogenesis, and appetite. Clin Obstet Gynecol 2013; 56: 529–536.

    PubMed  PubMed Central  Google Scholar 

  9. Laitinen J, Jääskeläinen A, Hartikainen AL, Sovio U, Vääräsmäki M, Pouta A et al. Maternal weight gain during the first half of pregnancy and offspring obesity at 16 years: a prospective cohort study. BJOG 2012; 119: 716–723.

    CAS  PubMed  Google Scholar 

  10. Ogden CL, Carroll MD, Kit BK, Flegal KM . Prevalence of obesity and trends in body mass index among US children and adolescents, 1999-2010. JAMA 2012; 307: 483–490.

    PubMed  PubMed Central  Google Scholar 

  11. de Rooij SR, Painter RC, Holleman F, Bossuyt PM, Roseboom TJ . The metabolic syndrome in adults prenatally exposed to the Dutch famine. Am J Clin Nutr 2007; 86: 1219–1224.

    CAS  PubMed  Google Scholar 

  12. Desai M, Gayle D, Babu J, Ross MG . Programmed obesity in intrauterine growth-restricted newborns: modulation by newborn nutrition. Am J Physiol Regul Integr Comp Physiol 2005; 288: R91–R96.

    CAS  PubMed  Google Scholar 

  13. Desai M, Jellyman JK, Han G, Beall M, Lane RH, Ross MG . Maternal obesity and high-fat diet program offspring metabolic syndrome. Am J Obstet Gynecol 2014; 211: 237.e1–237.e13.

    Google Scholar 

  14. Vickers MH, Krechowec SO, Breier BH . Is later obesity programmed in utero? Curr Drug Targets 2007; 8: 923–934.

    CAS  PubMed  Google Scholar 

  15. Remacle C, Bieswal F, Reusens B . Programming of obesity and cardiovascular disease. Int J Obes Relat Metab Disord 2004; 28: S46–S53.

    PubMed  Google Scholar 

  16. Barker DJ, Osmond C, Kajantie E, Eriksson JG . Growth and chronic disease: findings in the Helsinki Birth Cohort. Ann Hum Biol 2009; 36: 445–458.

    PubMed  Google Scholar 

  17. Barker DJ . The developmental origins of adult disease. Eur J Epidemiol 2003; 18: 733–736.

    CAS  PubMed  Google Scholar 

  18. Euser AM, Finken MJ, Keijzer-Veen MG, Hille ET, Wit JM, Dekker FW, Dutch POPS-19 Collaborative Study Group. Associations between prenatal and infancy weight gain and BMI, fat mass, and fat distribution in young adulthood: a prospective cohort study in males and females born very preterm. Am J Clin Nutr 2005; 81: 480–487.

    CAS  PubMed  Google Scholar 

  19. Monteiro PO, Victora CG . Rapid growth in infancy and childhood and obesity in later life—a systematic review. Obes Rev 2005; 6: 143–154.

    CAS  PubMed  Google Scholar 

  20. Boney CM, Verma A, Tucker R, Vohr BR . Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics 2005; 115: e290–e296.

    PubMed  Google Scholar 

  21. Oken E, Rifas-Shiman SL, Field AE, Frazier AL, Gillman MW . Maternal gestational weight gain and offspring weight in adolescence. Obstet Gynecol 2008; 112: 999–1006.

    PubMed  PubMed Central  Google Scholar 

  22. Armitage JA, Poston L, Taylor PD . Developmental origins of obesity and the metabolic syndrome: the role of maternal obesity. Front Horm Res 2008; 36: 73–84.

    PubMed  Google Scholar 

  23. Pettitt DJ, Jovanovic L . Birth weight as a predictor of type 2 diabetes mellitus: the U-shaped curve. Curr Diab Rep 2001; 1: 78–81.

    CAS  PubMed  Google Scholar 

  24. Ong KK . Size at birth, postnatal growth and risk of obesity. Horm Res 2006; 65: 65–69.

    CAS  PubMed  Google Scholar 

  25. McMillen IC, Robinson JS . Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev 2005; 85: 571–633.

    CAS  PubMed  Google Scholar 

  26. Desai M, Hales CN . Role of fetal and infant growth in programming metabolism in later life. Biol Rev Camb Philos Soc 1997; 72: 329–348.

    CAS  PubMed  Google Scholar 

  27. Seckl JR, Meaney MJ . Glucocorticoid programming. Ann NY Acad Sci 2004; 1032: 63–84.

    CAS  PubMed  Google Scholar 

  28. Bol VV, Delattre AI, Reusens B, Raes M, Remacle C . Forced catch-up growth after fetal protein restriction alters the adipose tissue gene expression program leading to obesity in adult mice. Am J Physiol Regul Integr Comp Physiol 2009; 297: R291–R299.

    CAS  PubMed  Google Scholar 

  29. Jones AP, Simson EL, Friedman MI . Gestational undernutrition and the development of obesity in rats. J Nutr 1984; 114: 1484–1492.

    CAS  PubMed  Google Scholar 

  30. White CL, Purpera MN, Morrison CD . Maternal obesity is necessary for programming effect of high-fat diet on offspring. Am J Physiol Regul Integr Comp Physiol 2009; 296: R1464–R1472.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Howie GJ, Sloboda DM, Kamal T, Vickers MH . Maternal nutritional history predicts obesity in adult offspring independent of postnatal diet. J Physiol 2009; 587: 905–915.

    CAS  PubMed  Google Scholar 

  32. Bird A . Perceptions of epigenetics. Nature 2007; 447: 396–398.

    CAS  PubMed  Google Scholar 

  33. Dolinoy DC, Jirtle RL . Environmental epigenomics in human health and disease. Environ Mol Mutagen 2008; 49: 4–8.

    CAS  PubMed  Google Scholar 

  34. Feil R, Fraga MF . Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet 2012; 13: 97–109.

    CAS  PubMed  Google Scholar 

  35. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 2009; 462: 315–322.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Robertson KD, Wolffe AP . DNA methylation in health and disease. Nat Rev Genet 2000; 1: 11–19.

    CAS  PubMed  Google Scholar 

  37. Clarke HJ . Nuclear and chromatin composition of mammalian gametes and early embryos. Biochem Cell Biol 1992; 70: 856–866.

    CAS  PubMed  Google Scholar 

  38. Weaver JR, Susiarjo M, Bartolomei MS . Imprinting and epigenetic changes in the early embryo. Mamm Genome 2009; 20: 532–543.

    PubMed  Google Scholar 

  39. Caldji C, Hellstrom IC, Zhang TY, Diorio J, Meaney MJ . Environmental regulation of the neural epigenome. FEBS Lett 2011; 585: 2049–2058.

    CAS  PubMed  Google Scholar 

  40. Guo JU, Ma DK, Mo H, Ball MP, Jang MH, Bonaguidi MA et al. Neuronal activity modifies the DNA methylation landscape in the adult brain. Nat Neurosci 2011; 14: 1345–1351.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Horvath S . DNA methylation age of human tissues and cell types. Genome Biol 2013; 14: R115.

    PubMed  PubMed Central  Google Scholar 

  42. Fang M, Chen D, Yang CS . Dietary polyphenols may affect DNA methylation. J Nutr 2007; 137: 223S–228S.

    CAS  PubMed  Google Scholar 

  43. Burdge GC, Hoile SP, Uller T, Thomas NA, Gluckman PD, Hanson MA et al. Progressive, transgenerational changes in offspring phenotype and epigenotype following nutritional transition. PLoS One 2011; 6: e28282.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Jenuwein T, Allis CD . Translating the histone code. Science 2001; 293: 1074–1080.

    CAS  PubMed  Google Scholar 

  45. Cosgrove MS . Histone proteomics and the epigenetic regulation of nucleosome mobility. Expert Rev Proteomics 2007; 4: 465–478.

    CAS  PubMed  Google Scholar 

  46. Higgs PG, Lehman N . The RNA World: molecular cooperation at the origins of life. Nat Rev Genet 2015; 16: 7–17.

    CAS  PubMed  Google Scholar 

  47. Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS . Non-coding RNAs: regulators of disease. J Pathol 2010; 220: 126–139.

    CAS  PubMed  Google Scholar 

  48. Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 2007; 129: 1311–1323.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS . Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci USA 2008; 105: 716–721.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Clemson CM, Hutchinson JN, Sara SA, Ensminger AW, Fox AH, Chess A et al. An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell 2009; 33: 717–726.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Sun L, Goff LA, Trapnell C, Alexander R, Lo KA, Hacisuleyman E et al. Long noncoding RNAs regulate adipogenesis. Proc Natl Acad Sci USA 2013; 110: 3387–3392.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhao XY, Li S, Wang GX, Yu Q, Lin JD . A long noncoding RNA transcriptional regulatory circuit drives thermogenic adipocyte differentiation. Mol Cell 2014; 55: 372–382.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen K, Rajewsky N . The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 2007; 8: 93–103.

    CAS  PubMed  Google Scholar 

  54. Ding XC, Weiler J, Grosshans H . Regulating the regulators: mechanisms controlling the maturation of microRNAs. Trends Biotechnol 2009; 27: 27–36.

    CAS  PubMed  Google Scholar 

  55. Bouchard L, Rabasa-Lhoret R, Faraj M, Lavoie ME, Mill J, Pérusse L et al. Differential epigenomic and transcriptomic responses in subcutaneous adipose tissue between low and high responders to caloric restriction. Am J Clin Nutr 2010; 91: 309–320.

    CAS  PubMed  Google Scholar 

  56. McGee SL, Hargreaves M . Exercise and skeletal muscle glucose transporter 4 expression: molecular mechanisms. Clin Exp Pharmacol Physiol 2006; 33: 395–399.

    CAS  PubMed  Google Scholar 

  57. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 2005; 102: 10604–10609.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Moleres A, Campión J, Milagro FI, Marcos A, Campoy C, Garagorri JM et al. Differential DNA methylation patterns between high and low responders to a weight loss intervention in overweight or obese adolescents: the EVASYON study. FASEB J 2013; 27: 2504–2512.

    CAS  PubMed  Google Scholar 

  59. Morgan HD, Sutherland HG, Martin DI, Whitelaw E . Epigenetic inheritance at the agouti locus in the mouse. Nat Genet 1999; 23: 314–318.

    CAS  PubMed  Google Scholar 

  60. Waterland RA, Jirtle RL . Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 2003; 23: 5293–5300.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Cropley JE, Suter CM, Beckman KB, Martin DI . Germ-line epigenetic modification of the murine A vy allele by nutritional supplementation. Proc Natl Acad Sci USA 2006; 103: 17308–17312.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Waterland RA, Travisano M, Tahiliani KG . Diet-induced hypermethylation at agouti viable yellow is not inherited transgenerationally through the female. FASEB J 2007; 21: 3380–3385.

    CAS  PubMed  Google Scholar 

  63. Luedi PP, Hartemink AJ, Jirtle RL . Genome-wide prediction of imprinted murine genes. Genome Res 2005; 15: 875–884.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Waterland RA, Lin JR, Smith CA, Jirtle RL . Post-weaning diet affects genomic imprinting at the insulin-like growth factor 2 (Igf2) locus. Hum Mol Genet 2006; 15: 705–716.

    CAS  PubMed  Google Scholar 

  65. Aasheim ET, Hofsø D, Hjelmesaeth J, Birkeland KI, Bøhmer T . Vitamin status in morbidly obese patients: a cross-sectional study. Am J Clin Nutr 2008; 87: 362–369.

    CAS  PubMed  Google Scholar 

  66. Weinstein LS, Xie T, Qasem A, Wang J, Chen M . The role of GNAS and other imprinted genes in the development of obesity. Int J Obes (Lond) 2010; 34: 6–17.

    CAS  Google Scholar 

  67. Milagro FI, Campión J, García-Díaz DF, Goyenechea E, Paternain L, Martínez JA . High fat diet-induced obesity modifies the methylation pattern of leptin promoter in rats. J Physiol Biochem 2009; 65: 1–9.

    CAS  PubMed  Google Scholar 

  68. Yang BT, Dayeh TA, Kirkpatrick CL, Taneera J, Kumar R, Groop L et al. Insulin promoter DNA methylation correlates negatively with insulin gene expression and positively with HbA(1c) levels in human pancreatic islets. Diabetologia 2011; 54: 360–367.

    CAS  PubMed  Google Scholar 

  69. Noer A, Boquest AC, Collas P . Dynamics of adipogenic promoter DNA methylation during clonal culture of human adipose stem cells to senescence. BMC Cell Biol 2007; 8: 18.

    PubMed  PubMed Central  Google Scholar 

  70. Stepanow S, Reichwald K, Huse K, Gausmann U, Nebel A, Rosenstiel P et al. Allele-specific, age-dependent and BMI-associated DNA methylation of human MCHR1. PLoS One 2011; 6: e17711.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Yokomori N, Tawata M, Onaya T . DNA demethylation during the differentiation of 3T3-L1 cells affects the expression of the mouse GLUT4 gene. Diabetes 1999; 48: 685–690.

    CAS  PubMed  Google Scholar 

  72. Fujiki K, Kano F, Shiota K, Murata M . Expression of the peroxisome proliferator activated receptor gamma gene is repressed by DNA methylation in visceral adipose tissue of mouse models of diabetes. BMC Biol 2009; 7: 38.

    PubMed  PubMed Central  Google Scholar 

  73. Musri MM, Corominola H, Casamitjana R, Gomis R, Párrizas M . Histone H3 lysine 4 dimethylation signals the transcriptional competence of the adiponectin promoter in preadipocytes. J Biol Chem 2006; 281: 17180–17188.

    CAS  PubMed  Google Scholar 

  74. Sullivan KE, Reddy AB, Dietzmann K, Suriano AR, Kocieda VP, Stewart M et al. Epigenetic regulation of tumor necrosis factor alpha. Mol Cell Biol 2007; 27: 5147–5160.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Kilpeläinen TO, Zillikens MC, Stančákova A, Finucane FM, Ried JS, Langenberg C et al. Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile. Nat Genet 2011; 43: 753–760.

    PubMed  PubMed Central  Google Scholar 

  76. Musri MM, Párrizas M . Epigenetic regulation of adipogenesis. Curr Opin Clin Nutr Metab Care 2012; 15: 342–349.

    CAS  PubMed  Google Scholar 

  77. Ge K . Epigenetic regulation of adipogenesis by histone methylation. Biochim Biophys Acta 2012; 1819: 727–732.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Li HX, Xiao L, Wang C, Gao JL, Zhai YG . Review: Epigenetic regulation of adipocyte differentiation and adipogenesis. J Zhejiang Univ Sci B 2010; 11: 784–791.

    PubMed  PubMed Central  Google Scholar 

  79. Wang X, Zhu H, Snieder H, Su S, Munn D, Harshfield G et al. Obesity related methylation changes in DNA of peripheral blood leukocytes. BMC Med 2010; 8: 87.

    PubMed  PubMed Central  Google Scholar 

  80. Jufvas A, Sjödin S, Lundqvist K, Amin R, Vener AV, Strålfors P . Global differences in specific histone H3 methylation are associated with overweight and type 2 diabetes. Clin Epigenetics 2013; 5: 15.

    PubMed  PubMed Central  Google Scholar 

  81. Ortega FJ, Moreno-Navarrete JM, Pardo G, Sabater M, Hummel M, Ferrer A et al. MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation. PLoS One 2010; 5: e9022.

    PubMed  PubMed Central  Google Scholar 

  82. Tateishi K, Okada Y, Kallin EM, Zhang Y . Role of Jhdm2a in regulating metabolic gene expression and obesity resistance. Nature 2009; 458: 757–761.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Inagaki T, Tachibana M, Magoori K, Kudo H, Tanaka T, Okamura M et al. Obesity and metabolic syndrome in histone demethylase JHDM2a-deficient mice. Genes Cells 2009; 14: 991–1001.

    CAS  PubMed  Google Scholar 

  84. Lu YL, Jing W, Feng LS, Zhang L, Xu JF, You TJ et al. Effects of hypoxic exercise training on microRNA expression and lipid metabolism in obese rat livers. J Zhejiang Univ Sci B 2014; 15: 820–829.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Son YH, Ka S, Kim AY, Kim JB . Regulation of Adipocyte Differentiation via MicroRNAs. Endocrinol Metab (Seoul) 2014; 29: 122–135.

    Google Scholar 

  86. Vinnikov IA, Hajdukiewicz K, Reymann J, Beneke J, Czajkowski R, Roth LC et al. Hypothalamic miR-103 protects from hyperphagic obesity in mice. J Neurosci 2014; 34: 10659–10674.

    PubMed  PubMed Central  Google Scholar 

  87. Funato H, Oda S, Yokofujita J, Igarashi H, Kuroda M . Fasting and high-fat diet alter histone deacetylase expression in the medial hypothalamus. PLoS One 2011; 6: e18950.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. McGregor RA, Choi MS . microRNAs in the regulation of adipogenesis and obesity. Curr Mol Med 2011; 11: 304–316.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Yang QY, Liang JF, Rogers CJ, Zhao JX, Zhu MJ, Du M . Maternal obesity induces epigenetic modifications to facilitate Zfp423 expression and enhance adipogenic differentiation in fetal mice. Diabetes 2013; 62: 3727–3735.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Borengasser SJ, Zhong Y, Kang P, Lindsey F, Ronis MJ, Badger TM et al. Maternal obesity enhances white adipose tissue differentiation and alters genome-scale DNA methylation in male rat offspring. Endocrinology 2013; 154: 4113–4125.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Kamei Y, Suganami T, Ehara T, Kanai S, Hayashi K, Yamamoto Y et al. Increased expression of DNA methyltransferase 3a in obese adipose tissue: studies with transgenic mice. Obesity (Silver Spring) 2010; 18: 314–321.

    CAS  Google Scholar 

  92. Lee J, Saha PK, Yang QH, Lee S, Park JY, Suh Y et al. Targeted inactivation of MLL3 histone H3-Lys-4 methyltransferase activity in the mouse reveals vital roles for MLL3 in adipogenesis. Proc Natl Acad Sci USA 2008; 105: 19229–19234.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA 2008; 105: 17046–17049.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Tobi EW, Lumey LH, Talens RP, Kremer D, Putter H, Stein AD et al. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet 2009; 18: 4046–4053.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Soubry A, Murphy SK, Wang F, Huang Z, Vidal AC, Fuemmeler BF et al. Newborns of obese parents have altered DNA methylation patterns at imprinted genes. Int J Obes (Lond) 2013. e-pub ahead of print 25 October 2013 doi:10.1038/ijo.2013.193.

    PubMed  Google Scholar 

  96. Soubry A, Schildkraut JM, Murtha A, Wang F, Huang Z, Bernal A et al. Paternal obesity is associated with IGF2 hypomethylation in newborns: results from a Newborn Epigenetics Study (NEST) cohort. BMC Med 2013; 11: 29.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Morales E, Groom A, Lawlor DA, Relton CL . DNA methylation signatures in cord blood associated with maternal gestational weight gain: results from the ALSPAC cohort. BMC Res Notes 2014; 7: 278.

    PubMed  PubMed Central  Google Scholar 

  98. Godfrey KM, Sheppard A, Gluckman PD, Lillycrop KA, Burdge GC, McLean C et al. Epigenetic gene promoter methylation at birth is associated with child's later adiposity. Diabetes 2011; 60: 1528–1534.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Campión J, Milagro F, Martínez JA . Epigenetics and obesity. Prog Mol Biol Transl Sci 2010; 94: 291–347.

    PubMed  Google Scholar 

  100. Lavebratt C, Almgren M, Ekström TJ . Epigenetic regulation in obesity. Int J Obes (Lond) 2012; 36: 757–765.

    CAS  Google Scholar 

  101. Lillycrop KA, Burdge GC . Epigenetic changes in early life and future risk of obesity. Int J Obes (Lond) 2011; 35: 72–83.

    CAS  Google Scholar 

  102. Wang J, Wu Z, Li D, Li N, Dindot SV, Satterfield MC et al. Nutrition, epigenetics, and metabolic syndrome. Antioxid Redox Signal 2012; 17: 282–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Ganu RS, Harris RA, Collins K, Aagaard KM . Maternal diet: a modulator for epigenomic regulation during development in nonhuman primates and humans. Int J Obes Suppl 2012; 2: S14–S18.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Tosh DN, Fu Q, Callaway CW, McKnight RA, McMillen IC, Ross MG et al. Epigenetics of programmed obesity: alteration in IUGR rat hepatic IGF1 mRNA expression and histone structure in rapid vs delayed postnatal catch-up growth. Am J Physiol Gastrointest Liver Physiol 2010; 299: G1023–G1029.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Desai M, Jellyman JK, Han G, Beall MH, Ross MG . Mechanism of programmed obesity in intrauterine growth restricted newborns: epigenetic mediated early induction of adipocyte differentiation contributes to enhanced adipogenesis. J Dev Orig Health Dis 2013; 4 (Suppl 2): S138.

    Google Scholar 

  106. Cho CE, Sánchez-Hernández D, Reza-López SA, Huot PS, Kim YI, Anderson GH . High folate gestational and post-weaning diets alter hypothalamic feeding pathways by DNA methylation in Wistar rat offspring. Epigenetics 2013; 8: 710–719.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Vucetic Z, Kimmel J, Totoki K, Hollenbeck E, Reyes TM . Maternal high-fat diet alters methylation and gene expression of dopamine and opioid-related genes. Endocrinology 2010; 151: 4756–4764.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Stevens A, Begum G, Cook A, Connor K, Rumball C, Oliver M et al. Epigenetic changes in the hypothalamic proopiomelanocortin and glucocorticoid receptor genes in the ovine fetus after periconceptional undernutrition. Endocrinology 2010; 151: 3652–3664.

    CAS  PubMed  Google Scholar 

  109. Plagemann A, Harder T, Brunn M, Harder A, Roepke K, Wittrock-Staar M et al. Hypothalamic proopiomelanocortin promoter methylation becomes altered by early overfeeding: an epigenetic model of obesity and the metabolic syndrome. J Physiol 2009; 587: 4963–4976.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Raychaudhuri N, Raychaudhuri S, Thamotharan M, Devaskar SU . Histone code modifications repress glucose transporter 4 expression in the intrauterine growth-restricted offspring. J Biol Chem 2008; 283: 13611–13626.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Desai M, Ross MG . Fetal programming of adipose tissue: effects of intrauterine growth restriction and maternal obesity/high-fat diet. Semin Reprod Med 2011; 29: 237–245.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Fan S, Zhang X . CpG island methylation pattern in different human tissues and its correlation with gene expression. Biochem Biophys Res Commun 2009; 383: 421–425.

    CAS  PubMed  Google Scholar 

  113. Flanagan JM, Popendikyte V, Pozdniakovaite N, Sobolev M, Assadzadeh A, Schumacher A et al. Intra- and interindividual epigenetic variation in human germ cells. Am J Hum Genet 2006; 79: 67–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Trasler JM . Epigenetics in spermatogenesis. Mol Cell Endocrinol 2009; 306: 33–36.

    CAS  PubMed  Google Scholar 

  115. Guibert S, Forné T, Weber M . Global profiling of DNA methylation erasure in mouse primordial germ cells. Genome Res 2012; 22: 633–641.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Barres R, Zierath JR . DNA methylation in metabolic disorders. Am J Clin Nutr 2011; 93: 897S–900S.

    CAS  PubMed  Google Scholar 

  117. Skinner MK . Environmental epigenetic transgenerational inheritance and somatic epigenetic mitotic stability. Epigenetics 2011; 6: 838–842.

    CAS  PubMed  Google Scholar 

  118. Lange UC, Schneider R . What an epigenome remembers. Bioessays 2010; 32: 659–668.

    CAS  PubMed  Google Scholar 

  119. Johnson PC, Logue J, McConnachie A, Abu-Rmeileh NM, Hart C, Upton MN et al. Intergenerational change and familial aggregation of body mass index. Eur J Epidemiol 2012; 27: 53–61.

    PubMed  Google Scholar 

  120. Jodkowska M, Oblacińska A, Tabak I, Mikiel-Kostyra K . [Overweight and obesity among parents and their 13-old children in Poland]. Przegl Epidemiol 2011; 65: 497–502.

    PubMed  Google Scholar 

  121. Cnattingius S, Villamor E, Lagerros YT, Wikström AK, Granath F . High birth weight and obesity—a vicious circle across generations. Int J Obes (Lond) 2012; 36: 1320–1324.

    CAS  Google Scholar 

  122. Smith J, Cianflone K, Biron S, Hould FS, Lebel S, Marceau S et al. Effects of maternal surgical weight loss in mothers on intergenerational transmission of obesity. J Clin Endocrinol Metab 2009; 94: 4275–4283.

    CAS  PubMed  Google Scholar 

  123. Skinner MK . What is an epigenetic transgenerational phenotype? F3 or F2. Reprod Toxicol 2008; 25: 2–6.

    CAS  PubMed  Google Scholar 

  124. Paoloni-Giacobino A . Epigenetic effects of methoxychlor and vinclozolin on male gametes. Vitam Horm 2014; 94: 211–227.

    CAS  PubMed  Google Scholar 

  125. Radford EJ, Ito M, Shi H, Corish JA, Yamazawa K, Isganaitis E et al. In utero effects. In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science 2014; 345: 1255903.

    PubMed  PubMed Central  Google Scholar 

  126. Dolinoy DC, Huang D, Jirtle RL . Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci USA 2007; 104: 13056–13061.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Prins GS, Tang WY, Belmonte J, Ho SM . Developmental exposure to bisphenol A increases prostate cancer susceptibility in adult rats: epigenetic mode of action is implicated. Fertil Steril 2008; 89: e41.

    PubMed  PubMed Central  Google Scholar 

  128. Skinner MK, Anway MD, Savenkova MI, Gore AC, Crews D . Transgenerational epigenetic programming of the brain transcriptome and anxiety behavior. PLoS One 2008; 3: e3745.

    PubMed  PubMed Central  Google Scholar 

  129. Salian S, Doshi T, Vanage G . Perinatal exposure of rats to Bisphenol A affects fertility of male offspring—an overview. Reprod Toxicol 2011; 31: 359–362.

    CAS  PubMed  Google Scholar 

  130. Bäckdahl L, Bushell A, Beck S . Inflammatory signalling as mediator of epigenetic modulation in tissue-specific chronic inflammation. Int J Biochem Cell Biol 2009; 41: 176–184.

    PubMed  Google Scholar 

  131. Desai M, Beall M, Ross MG . Developmental origins of obesity: programmed adipogenesis. Curr Diab Rep 2013; 13: 27–33.

    PubMed  PubMed Central  Google Scholar 

  132. Singh K, Molenaar AJ, Swanson KM, Gudex B, Arias JA, Erdman RA et al. Epigenetics: a possible role in acute and transgenerational regulation of dairy cow milk production. Animal 2012; 6: 375–381.

    CAS  PubMed  Google Scholar 

  133. Kinyamu HK, Jefferson WN, Archer TK . Intersection of nuclear receptors and the proteasome on the epigenetic landscape. Environ Mol Mutagen 2008; 49: 83–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Green CD, Han JD . Epigenetic regulation by nuclear receptors. Epigenomics 2011; 3: 59–72.

    CAS  PubMed  Google Scholar 

  135. Kato S, Yokoyama A, Fujiki R . Nuclear receptor coregulators merge transcriptional coregulation with epigenetic regulation. Trends Biochem Sci 2011; 36: 272–281.

    CAS  PubMed  Google Scholar 

  136. Klinge CM . Estrogen regulation of microRNA expression. Curr Genomics 2009; 10: 169–183.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Shi XB, Tepper CG, deVere White RW . Cancerous miRNAs and their regulation. Cell Cycle 2008; 7: 1529–1538.

    CAS  PubMed  Google Scholar 

  138. Aerts L, Van Assche FA . Intra-uterine transmission of disease. Placenta 2003; 24: 905–911.

    CAS  PubMed  Google Scholar 

  139. Aerts L, Van Assche FA . Animal evidence for the transgenerational development of diabetes mellitus. Int J Biochem Cell Biol 2006; 38: 894–903.

    CAS  PubMed  Google Scholar 

  140. Ding GL, Huang HF . Paternal transgenerational glucose intolerance with epigenetic alterations in second generation offspring of GDM. Asian J Androl 2013; 15: 451–452.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Jimenez-Chillaron JC, Isganaitis E, Charalambous M, Gesta S, Pentinat-Pelegrin T, Faucette RR et al. Intergenerational transmission of glucose intolerance and obesity by in utero undernutrition in mice. Diabetes 2009; 58: 460–468.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Yajnik CS . The lifecycle effects of nutrition and body size on adult adiposity, diabetes and cardiovascular disease. Obes Rev 2002; 3: 217–224.

    CAS  PubMed  Google Scholar 

  143. Klebanoff MA, Meirik O, Berendes HW . Second-generation consequences of small-for-dates birth. Pediatrics 1989; 84: 343–347.

    CAS  PubMed  Google Scholar 

  144. Emanuel I, Filakti H, Alberman E, Evans SJ . Intergenerational studies of human birthweight from the 1958 birth cohort. 1. Evidence for a multigenerational effect. Br J Obstet Gynaecol 1992; 99: 67–74.

    CAS  PubMed  Google Scholar 

  145. Lumey LH . Decreased birthweights in infants after maternal in utero exposure to the Dutch famine of 1944-1945. Paediatr Perinat Epidemiol 1992; 6: 240–253.

    CAS  PubMed  Google Scholar 

  146. Lumey LH, Stein AD, Ravelli AC . Timing of prenatal starvation in women and birth weight in their first and second born offspring: the Dutch Famine Birth Cohort study. Eur J Obstet Gynecol Reprod Biol 1995; 61: 23–30.

    CAS  PubMed  Google Scholar 

  147. Stein AD, Lumey LH . The relationship between maternal and offspring birth weights after maternal prenatal famine exposure: the Dutch Famine Birth Cohort Study. Hum Biol 2000; 72: 641–654.

    CAS  PubMed  Google Scholar 

  148. Painter RC, Osmond C, Gluckman P, Hanson M, Phillips DI, Roseboom TJ . Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life. BJOG 2008; 115: 1243–1249.

    CAS  PubMed  Google Scholar 

  149. Veenendaal MV, Painter RC, de Rooij SR, Bossuyt PM, van der Post JA, Gluckman PD et al. Transgenerational effects of prenatal exposure to the 1944-45 Dutch famine. BJOG 2013; 120: 548–553.

    CAS  PubMed  Google Scholar 

  150. Huang C, Li Z, Narayan KM, Williamson DF, Martorell R . Bigger babies born to women survivors of the 1959-1961 Chinese famine: a puzzle due to survival selection? J Dev Orig Health Dis 2010; 1: 412–418.

    CAS  PubMed  Google Scholar 

  151. Pembrey ME, Bygren LO, Kaati G, Edvinsson S, Northstone K, Sjöström M et al. Sex-specific, male-line transgenerational responses in humans. Eur J Hum Genet 2006; 14: 159–166.

    PubMed  Google Scholar 

  152. Kaati G, Bygren LO, Edvinsson S . Cardiovascular and diabetes mortality determined by nutrition during parents' and grandparents' slow growth period. Eur J Hum Genet 2002; 10: 682–688.

    CAS  PubMed  Google Scholar 

  153. Dunn GA, Bale TL . Maternal high-fat diet effects on third-generation female body size via the paternal lineage. Endocrinology 2011; 152: 2228–2236.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Stewart RJ, Preece RF, Sheppard HG . Twelve generations of marginal protein deficiency. Br J Nutr 1975; 33: 233–253.

    CAS  PubMed  Google Scholar 

  155. Vickers MH, Breier BH, Cutfield WS, Hofman PL, Gluckman PD . Fetal origins of hyperphagia, obesity, and hypertension and postnatal amplification by hypercaloric nutrition. Am J Physiol Endocrinol Metab 2000; 279: E83–E87.

    CAS  PubMed  Google Scholar 

  156. Pentinat T, Ramon-Krauel M, Cebria J, Diaz R, Jimenez-Chillaron JC . Transgenerational inheritance of glucose intolerance in a mouse model of neonatal overnutrition. Endocrinology 2010; 151: 5617–5623.

    CAS  PubMed  Google Scholar 

  157. Pinheiro AR, Salvucci ID, Aguila MB, Mandarim-de-Lacerda CA . Protein restriction during gestation and/or lactation causes adverse transgenerational effects on biometry and glucose metabolism in F1 and F2 progenies of rats. Clin Sci (Lond) 2008; 114: 381–392.

    CAS  Google Scholar 

  158. Thamotharan M, Garg M, Oak S, Rogers LM, Pan G, Sangiorgi F et al. Transgenerational inheritance of the insulin-resistant phenotype in embryo-transferred intrauterine growth-restricted adult female rat offspring. Am J Physiol Endocrinol Metab 2007; 292: E1270–E1279.

    CAS  PubMed  Google Scholar 

  159. Benyshek DC, Johnston CS, Martin JF . Glucose metabolism is altered in the adequately-nourished grand-offspring (F3 generation) of rats malnourished during gestation and perinatal life. Diabetologia 2006; 49: 1117–1119.

    CAS  PubMed  Google Scholar 

  160. Martin JF, Johnston CS, Han CT, Benyshek DC . Nutritional origins of insulin resistance: a rat model for diabetes-prone human populations. J Nutr 2000; 130: 741–744.

    CAS  PubMed  Google Scholar 

  161. Zambrano E, Martínez-Samayoa PM, Bautista CJ, Deás M, Guillén L, Rodríguez-González GL et al. Sex differences in transgenerational alterations of growth and metabolism in progeny (F2) of female offspring (F1) of rats fed a low protein diet during pregnancy and lactation. J Physiol 2005; 566: 225–236.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Burdge GC, Slater-Jefferies J, Torrens C, Phillips ES, Hanson MA, Lillycrop KA . Dietary protein restriction of pregnant rats in the F0 generation induces altered methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 generations. Br J Nutr 2007; 97: 435–439.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Lane N, Dean W, Erhardt S, Hajkova P, Surani A, Walter J et al. Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis 2003; 35: 88–93.

    CAS  PubMed  Google Scholar 

  164. Drake AJ, Walker BR, Seckl JR . Intergenerational consequences of fetal programming by in utero exposure to glucocorticoids in rats. Am J Physiol Regul Integr Comp Physiol 2005; 288: R34–R38.

    CAS  PubMed  Google Scholar 

  165. Sjöström L, Lindroos AK, Peltonen M, Torgerson J, Bouchard C, Carlsson B et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med 2004; 351: 2683–2693.

    PubMed  Google Scholar 

  166. Rao SR . Inflammatory markers and bariatric surgery: a meta-analysis. Inflamm Res 2012; 61: 789–807.

    CAS  PubMed  Google Scholar 

  167. Buchwald H, Avidor Y, Braunwald E, Jensen MD, Pories W, Fahrbach K et al. Bariatric surgery: a systematic review and meta-analysis. JAMA 2004; 292: 1724–1737.

    CAS  PubMed  Google Scholar 

  168. Scopinaro N, Marinari GM, Camerini GB, Papadia FS, Adami GF . Specific effects of biliopancreatic diversion on the major components of metabolic syndrome: a long-term follow-up study. Diabetes Care 2005; 28: 2406–2411.

    PubMed  Google Scholar 

  169. Kral JG, Biron S, Simard S, Hould FS, Lebel S, Marceau S et al. Large maternal weight loss from obesity surgery prevents transmission of obesity to children who were followed for 2 to 18 years. Pediatrics 2006; 118: e1644–e1649.

    PubMed  Google Scholar 

  170. Berisha SZ, Serre D, Schauer P, Kashyap SR, Smith JD . Changes in whole blood gene expression in obese subjects with type 2 diabetes following bariatric surgery: a pilot study. PLoS One 2011; 6: e16729.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Park JJ, Berggren JR, Hulver MW, Houmard JA, Hoffman EP . GRB14, GPD1, and GDF8 as potential network collaborators in weight loss-induced improvements in insulin action in human skeletal muscle. Physiol Genomics 2006; 27: 114–121.

    CAS  PubMed  Google Scholar 

  172. Guénard F, Tchernof A, Deshaies Y, Cianflone K, Kral JG, Marceau P et al. Methylation and expression of immune and inflammatory genes in the offspring of bariatric bypass surgery patients. J Obes 2013; 2013: 492170.

    PubMed  PubMed Central  Google Scholar 

  173. Guénard F, Deshaies Y, Cianflone K, Kral JG, Marceau P, Vohl MC . Differential methylation in glucoregulatory genes of offspring born before vs after maternal gastrointestinal bypass surgery. Proc Natl Acad Sci USA 2013; 110: 11439–11444.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Desai.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desai, M., Jellyman, J. & Ross, M. Epigenomics, gestational programming and risk of metabolic syndrome. Int J Obes 39, 633–641 (2015). https://doi.org/10.1038/ijo.2015.13

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2015.13

This article is cited by

Search

Quick links