Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

A sexually dimorphic hypothalamic response to chronic high-fat diet consumption

Abstract

In this review, we discuss the observations that, following chronic high-fat diet (HFD) exposure, male mice have higher levels of saturated fatty acids (FAs) and total sphingolipids, whereas lower amounts of polyunsaturated FAs in the central nervous system (CNS) than females. Furthermore, males, when compared with female mice, have higher levels of inflammatory markers in the hypothalamus following exposure to HFD. The increase in markers of inflammation in male mice is possibly due to the reductions in proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) and estrogen receptor alpha (ERα), which is not recapitulated in female mice. Consistently, hypothalamic inflammation is induced both in male and female ERα total-body knockout mice when exposed to a HFD, thus confirming the key role of ERα in the regulation of HFD-induced hypothalamic inflammation. Finally, the HFD-induced depletion of hypothalamic ERα is associated with dysregulation in metabolic homeostasis, as evidenced by reductions in glucose tolerance and decrements in myocardial function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Shi H, Seeley RJ, Clegg DJ . Sexual differences in the control of energy homeostasis. Front Neuroendocrinol 2009; 30: 396–404.

    Article  CAS  Google Scholar 

  2. Sugiyama MG, Agellon LB . Sex differences in lipid metabolism and metabolic disease risk. BiochemCell Biol 2012; 90: 124–141.

    CAS  Google Scholar 

  3. Ford ES . Prevalence of the metabolic syndrome defined by the International Diabetes Federation among adults in the U.S. Diabetes Care 2005; 28: 2745–2749.

    Article  Google Scholar 

  4. Kopelman PG . Obesity as a medical problem. Nature 2000; 404: 635–643.

    Article  CAS  Google Scholar 

  5. Heine PA, Taylor JA, Iwamoto GA, Lubahn DB, Cooke PS . Increased adipose tissue in male and female estrogen receptor-alpha knockout mice. Proc Natl Acad Sci USA 2000; 97: 12729–12734.

    Article  CAS  Google Scholar 

  6. Smith EP, Boyd J, Frank GR, Takahashi H, Cohen RM, Specker B et al. Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N Engl J Med 1994; 331: 1056–1061.

    Article  CAS  Google Scholar 

  7. Xu Y, Nedungadi TP, Zhu L, Sobhani N, Irani BG, Davis KE et al. Distinct hypothalamic neurons mediate estrogenic effects on energy homeostasis and reproduction. Cell Metab 2011; 14: 453–465.

    Article  CAS  Google Scholar 

  8. Musatov S, Chen W, Pfaff DW, Mobbs CV, Yang XJ, Clegg DJ et al. Silencing of estrogen receptor alpha in the ventromedial nucleus of hypothalamus leads to metabolic syndrome. Proc Natl Acad Sci USA 2007; 104: 2501–2506.

    Article  CAS  Google Scholar 

  9. Zhang L, Bruce-Keller AJ, Dasuri K, Nguyen AT, Liu Y, Keller JN . Diet-induced metabolic disturbances as modulators of brain homeostasis. Biochim Biophys Acta 2009; 1792: 417–422.

    Article  CAS  Google Scholar 

  10. Hotamisligil GS . Inflammation and metabolic disorders. Nature 2006; 444: 860–867.

    Article  CAS  Google Scholar 

  11. Thaler JP, Yi CX, Schur EA, Guyenet SJ, Hwang BH, Dietrich MO et al. Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest 2011; 122: 153–162.

    Article  Google Scholar 

  12. Zhang QG, Wang R, Tang H, Dong Y, Chan A, Sareddy GR et al. Brain-derived estrogen exerts anti-inflammatory and neuroprotective actions in the rat hippocampus. Mol Cell Endocrinol 2014; 389: 84–91.

    Article  CAS  Google Scholar 

  13. De Marinis E, Acaz-Fonseca E, Arevalo MA, Ascenzi P, Fiocchetti M, Marino M et al. 17beta-Oestradiol anti-inflammatory effects in primary astrocytes require oestrogen receptor beta-mediated neuroglobin up-regulation. J Neuroendocrinol 2013; 25: 260–270.

    Article  CAS  Google Scholar 

  14. Petrone AB, Simpkins JW, Barr TL . 17beta-estradiol and inflammation: implications for ischemic stroke. Aging Dis 2014; 5: 340–345.

    PubMed  PubMed Central  Google Scholar 

  15. Morselli E, Fuente-Martin E, Finan B, Kim M, Frank A, Garcia-Caceres C et al. Hypothalamic PGC-1alpha protects against high-fat diet exposure by regulating ERalpha. Cell Rep 2014; 9: 633–645.

    Article  CAS  Google Scholar 

  16. Summers SA . Ceramides in insulin resistance and lipotoxicity. Prog Lipid Res 2006; 45: 42–72.

    Article  CAS  Google Scholar 

  17. Holland WL, Adams AC, Brozinick JT, Bui HH, Miyauchi Y, Kusminski CM et al. An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice. Cell Metab 2013; 17: 790–797.

    Article  CAS  Google Scholar 

  18. Haus JM, Kashyap SR, Kasumov T, Zhang R, Kelly KR, Defronzo RA et al. Plasma ceramides are elevated in obese subjects with type 2 diabetes and correlate with the severity of insulin resistance. Diabetes 2009; 58: 337–343.

    Article  CAS  Google Scholar 

  19. Borg ML, Omran SF, Weir J, Meikle PJ, Watt MJ . Consumption of a high-fat diet, but not regular endurance exercise training, regulates hypothalamic lipid accumulation in mice. J Physiol 2012; 590: 4377–4389.

    Article  CAS  Google Scholar 

  20. Holland WL, Bikman BT, Wang LP, Yuguang G, Sargent KM, Bulchand S et al. Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice. J Clin Invest 2011; 121: 1858–1870.

    Article  CAS  Google Scholar 

  21. Langeveld M, Aerts JM . Glycosphingolipids and insulin resistance. Prog Lipid Res 2009; 48: 196–205.

    Article  CAS  Google Scholar 

  22. Samad F, Hester KD, Yang G, Hannun YA, Bielawski J . Altered adipose and plasma sphingolipid metabolism in obesity: a potential mechanism for cardiovascular and metabolic risk. Diabetes 2006; 55: 2579–2587.

    Article  CAS  Google Scholar 

  23. Davis KE, D Neinast M, Sun K, M Skiles W, D Bills J, A Zehr J et al. The sexually dimorphic role of adipose and adipocyte estrogen receptors in modulating adipose tissue expansion, inflammation, and fibrosis. Mol Metab 2013; 2: 227–242.

    Article  CAS  Google Scholar 

  24. Posey KA, Clegg DJ, Printz RL, Byun J, Morton GJ, Vivekanandan-Giri A et al. Hypothalamic proinflammatory lipid accumulation, inflammation, and insulin resistance in rats fed a high-fat diet. Am J Physiol Endocrinol Metab 2009; 296: E1003–E1012.

    Article  CAS  Google Scholar 

  25. Opie LH, Walfish PG . Plasma free fatty acid concentrations in obesity. N Engl J Med 1963; 268: 757–760.

    Article  CAS  Google Scholar 

  26. Vegeto E, Belcredito S, Etteri S, Ghisletti S, Brusadelli A, Meda C et al. Estrogen receptor-alpha mediates the brain antiinflammatory activity of estradiol. Proc Natl Acad Sci USA 2003; 100: 9614–9619.

    Article  CAS  Google Scholar 

  27. Spence RD, Wisdom AJ, Cao Y, Hill HM, Mongerson CR, Stapornkul B et al. Estrogen mediates neuroprotection and anti-inflammatory effects during EAE through ERalpha signaling on astrocytes but not through ERbeta signaling on astrocytes or neurons. J Neurosci 2013; 33: 10924–10933.

    Article  CAS  Google Scholar 

  28. Bourdoncle A, Labesse G, Margueron R, Castet A, Cavailles V, Royer CA . The nuclear receptor coactivator PGC-1alpha exhibits modes of interaction with the estrogen receptor distinct from those of SRC-1. J Mol Biol 2005; 347: 921–934.

    Article  CAS  Google Scholar 

  29. Tcherepanova I, Puigserver P, Norris JD, Spiegelman BM, McDonnell DP . Modulation of estrogen receptor-alpha transcriptional activity by the coactivator PGC-1. J Biol Chem 2000; 275: 16302–16308.

    Article  CAS  Google Scholar 

  30. Bazinet RP, Laye S . Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat Rev Neurosci 2014; 15: 771–785.

    Article  CAS  Google Scholar 

  31. Luchtman DW, Song C . Cognitive enhancement by omega-3 fatty acids from child-hood to old age: findings from animal and clinical studies. Neuropharmacology 2013; 64: 550–565.

    Article  CAS  Google Scholar 

  32. Conquer JA, Tierney MC, Zecevic J, Bettger WJ, Fisher RH . Fatty acid analysis of blood plasma of patients with Alzheimer’s disease, other types of dementia, and cognitive impairment. Lipids 2000; 35: 1305–1312.

    Article  CAS  Google Scholar 

  33. Morris MC, Evans DA, Bienias JL, Tangney CC, Bennett DA, Wilson RS et al. Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. Arch Neurol 2003; 60: 940–946.

    Article  Google Scholar 

  34. Schaefer EJ, Bongard V, Beiser AS, Lamon-Fava S, Robins SJ, Au R et al. Plasma phosphatidylcholine docosahexaenoic acid content and risk of dementia and Alzheimer disease: the Framingham Heart Study. Arch Neurol 2006; 63: 1545–1550.

    Article  Google Scholar 

  35. Kiecolt-Glaser JK, Belury MA, Porter K, Beversdorf DQ, Lemeshow S, Glaser R . Depressive symptoms, omega-6:omega-3 fatty acids, and inflammation in older adults. Psychosom Med 2007; 69: 217–224.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E Morselli or D J Clegg.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morselli, E., Frank, A., Palmer, B. et al. A sexually dimorphic hypothalamic response to chronic high-fat diet consumption. Int J Obes 40, 206–209 (2016). https://doi.org/10.1038/ijo.2015.114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2015.114

This article is cited by

Search

Quick links