Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Transcriptional control of brown adipocyte development and thermogenesis

Abstract

Brown adipose tissue (BAT) is a specialized endothermic tissue in eutherian mammals that protects against hypothermia. Heat production by BAT may also be stimulated by overfeeding as an apparent counter regulatory mechanism to prevent excessive adipose accumulation. Genetic studies in rodents have overwhelmingly demonstrated an antiobesity effect for BAT. There is thus substantial biomedical interest in developing methods to increase the amount or function of BAT as a means to combat obesity. Furthermore, the recent discovery that adult humans have rather significant amounts of active BAT raises speculation that this tissue may naturally affect body weight in humans. Recent advances in our understanding of the transcriptional regulation of brown adipocyte development and adaptive thermogenesis are reviewed here.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Seale P, Kajimura S, Spiegelman BM . Transcriptional control of brown adipocyte development and physiological function—of mice and men. Genes Dev 2009; 23: 788–797.

    Article  CAS  Google Scholar 

  2. Astrup A, Bulow J, Madsen J, Christensen NJ . Contribution of BAT and skeletal muscle to thermogenesis induced by ephedrine in man. Am J Physiol 1985; 248: E507–E515.

    CAS  PubMed  Google Scholar 

  3. Cunningham S, Leslie P, Hopwood D, Illingworth P, Jung RT, Nicholls DG et al. The characterization and energetic potential of brown adipose tissue in man. Clin Sci (Lond) 1985; 69: 343–348.

    Article  CAS  Google Scholar 

  4. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med 2009; 360: 1509–1517.

    Article  CAS  Google Scholar 

  5. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med 2009; 360: 1500–1508.

    Article  CAS  Google Scholar 

  6. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T et al. Functional brown adipose tissue in healthy adults. N Engl J Med 2009; 360: 1518–1525.

    Article  CAS  Google Scholar 

  7. Saito M, Okamatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, Nio-Kobayashi J et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 2009; 58: 1526–1531.

    Article  CAS  Google Scholar 

  8. Klingenberg M . Uncoupling protein—a useful energy dissipator. J Bioenerg Biomembr 1999; 31: 419–430.

    Article  CAS  Google Scholar 

  9. Cannon B, Nedergaard J . Brown adipose tissue: function and physiological significance. Physiol Rev 2004; 84: 277–359.

    Article  CAS  Google Scholar 

  10. Farmer SR . Transcriptional control of adipocyte formation. Cell Metab 2006; 4: 263–273.

    Article  CAS  Google Scholar 

  11. Rosen ED, MacDougald OA . Adipocyte differentiation from the inside out. Nat Rev 2006; 7: 885–896.

    Article  CAS  Google Scholar 

  12. Okuno A, Tamemoto H, Tobe K, Ueki K, Mori Y, Iwamoto K et al. Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats. J Clin Invest 1998; 101: 1354–1361.

    Article  CAS  Google Scholar 

  13. Wilson-Fritch L, Burkart A, Bell G, Mendelson K, Leszyk J, Nicoloro S et al. Mitochondrial biogenesis and remodeling during adipogenesis and in response to the insulin sensitizer rosiglitazone. Mol Cell Biol 2003; 23: 1085–1094.

    Article  CAS  Google Scholar 

  14. Wilson-Fritch L, Nicoloro S, Chouinard M, Lazar MA, Chui PC, Leszyk J et al. Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone. J Clin Invest 2004; 114: 1281–1289.

    Article  CAS  Google Scholar 

  15. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM et al. The hormone resistin links obesity to diabetes. Nature 2001; 409: 307–312.

    Article  CAS  Google Scholar 

  16. Vernochet C, Peres SB, Davis KE, McDonald ME, Qiang L, Wang H et al. C/EBPalpha and the corepressors CtBP1 and CtBP2 regulate repression of select visceral white adipose genes during induction of the brown phenotype in white adipocytes by peroxisome proliferator-activated receptor gamma agonists. Mol Cell Biol 2009; 29: 4714–4728.

    Article  CAS  Google Scholar 

  17. Fukui Y, Masui S, Osada S, Umesono K, Motojima K . A new thiazolidinedione, NC-2100, which is a weak PPAR-gamma activator, exhibits potent antidiabetic effects and induces uncoupling protein 1 in white adipose tissue of KKAy obese mice. Diabetes 2000; 49: 759–767.

    Article  CAS  Google Scholar 

  18. Guan HP, Ishizuka T, Chui PC, Lehrke M, Lazar MA . Corepressors selectively control the transcriptional activity of PPARgamma in adipocytes. Genes Dev 2005; 19: 453–461.

    Article  CAS  Google Scholar 

  19. Puri V, Ranjit S, Konda S, Nicoloro SM, Straubhaar J, Chawla A et al. Cidea is associated with lipid droplets and insulin sensitivity in humans. Proc Natl Acad Sci USA 2008; 105: 7833–7838.

    Article  CAS  Google Scholar 

  20. Barbera MJ, Schluter A, Pedraza N, Iglesias R, Villarroya F, Giralt M . Peroxisome proliferator-activated receptor alpha activates transcription of the brown fat uncoupling protein-1 gene. A link between regulation of the thermogenic and lipid oxidation pathways in the brown fat cell. J Biol Chem 2001; 276: 1486–1493.

    Article  CAS  Google Scholar 

  21. Carmona MC, Hondares E, Rodriguez de la Concepcion ML, Rodriguez-Sureda V, Peinado-Onsurbe J, Poli V et al. Defective thermoregulation, impaired lipid metabolism, but preserved adrenergic induction of gene expression in brown fat of mice lacking C/EBPbeta. Biochem J 2005; 389: 47–56.

    Article  CAS  Google Scholar 

  22. Karamanlidis G, Karamitri A, Docherty K, Hazlerigg DG, Lomax MA . C/EBPbeta reprograms white 3T3-L1 preadipocytes to a brown adipocyte pattern of gene expression. J Biol Chem 2007; 282: 24660–24669.

    Article  CAS  Google Scholar 

  23. Kajimura S, Seale P, Kubota K, Lunsford E, Frangioni JV, Gygi SP et al. Initiation of myoblast to brown fat conversion through a PRDM16-C/EBPβ transcriptional complex. Nature 2009; 460: 1154–1158.

    Article  CAS  Google Scholar 

  24. de Jesus LA, Carvalho SD, Ribeiro MO, Schneider M, Kim SW, Harney JW et al. The type 2 iodothyronine deiodinase is essential for adaptive thermogenesis in brown adipose tissue. J Clin Invest 2001; 108: 1379–1385.

    Article  CAS  Google Scholar 

  25. Ribeiro MO, Carvalho SD, Schultz JJ, Chiellini G, Scanlan TS, Bianco AC et al. Thyroid hormone—sympathetic interaction and adaptive thermogenesis are thyroid hormone receptor isoform—specific. J Clin Invest 2001; 108: 97–105.

    Article  CAS  Google Scholar 

  26. Ribeiro MO, Bianco SD, Kaneshige M, Schultz JJ, Cheng SY, Bianco AC et al. Expression of uncoupling protein 1 in mouse brown adipose tissue is thyroid hormone receptor-{beta} isoform specific and required for adaptive thermogenesis. Endocrinology 2010; 151: 432–440.

    Article  CAS  Google Scholar 

  27. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM . A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 1998; 92: 829–839.

    Article  CAS  Google Scholar 

  28. Tiraby C, Tavernier G, Lefort C, Larrouy D, Bouillaud F, Ricquier D et al. Acquirement of brown fat cell features by human white adipocytes. J Biol Chem 2003; 278: 33370–33376.

    Article  CAS  Google Scholar 

  29. Leone TC, Lehman JJ, Finck BN, Schaeffer PJ, Wende AR, Boudina S et al. PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol 2005; 3: e101.

    Article  Google Scholar 

  30. Lin J, Wu PH, Tarr PT, Lindenberg KS, St-Pierre J, Zhang CY et al. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell 2004; 119: 121–135.

    Article  CAS  Google Scholar 

  31. Uldry M, Yang W, St-Pierre J, Lin J, Seale P, Spiegelman BM . Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation. Cell Metab 2006; 3: 333–341.

    Article  CAS  Google Scholar 

  32. Cederberg A, Gronning LM, Ahren B, Tasken K, Carlsson P, Enerback S . FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet-induced insulin resistance. Cell 2001; 106: 563–573.

    Article  CAS  Google Scholar 

  33. Dahle MK, Gronning LM, Cederberg A, Blomhoff HK, Miura N, Enerback S et al. Mechanisms of FOXC2- and FOXD1-mediated regulation of the RI alpha subunit of cAMP-dependent protein kinase include release of transcriptional repression and activation by protein kinase B alpha and cAMP. J Biol Chem 2002; 277: 22902–22908.

    Article  CAS  Google Scholar 

  34. Hansen JB, Jorgensen C, Petersen RK, Hallenborg P, De Matteis R, Boye HA et al. Retinoblastoma protein functions as a molecular switch determining white versus brown adipocyte differentiation. Proc Natl Acad Sci USA 2004; 101: 4112–4117.

    Article  CAS  Google Scholar 

  35. Scime A, Grenier G, Huh MS, Gillespie MA, Bevilacqua L, Harper ME et al. Rb and p107 regulate preadipocyte differentiation into white versus brown fat through repression of PGC-1alpha. Cell Metab 2005; 2: 283–295.

    Article  CAS  Google Scholar 

  36. Tsukiyama-Kohara K, Poulin F, Kohara M, DeMaria CT, Cheng A, Wu Z et al. Adipose tissue reduction in mice lacking the translational inhibitor 4E-BP1. Nat Med 2001; 7: 1128–1132.

    Article  CAS  Google Scholar 

  37. Christian M, Kiskinis E, Debevec D, Leonardsson G, White R, Parker MG . RIP140-targeted repression of gene expression in adipocytes. Mol Cell Biol 2005; 25: 9383–9391.

    Article  CAS  Google Scholar 

  38. Wang H, Zhang Y, Yehuda-Shnaidman E, Medvedev AV, Kumar N, Daniel KW et al. Liver X receptor alpha is a transcriptional repressor of the uncoupling protein 1 gene and the brown fat phenotype. Mol Cell Biol 2008; 28: 2187–2200.

    Article  CAS  Google Scholar 

  39. Powelka AM, Seth A, Virbasius JV, Kiskinis E, Nicoloro SM, Guilherme A et al. Suppression of oxidative metabolism and mitochondrial biogenesis by the transcriptional corepressor RIP140 in mouse adipocytes. J Clin Invest 2006; 116: 125–136.

    Article  CAS  Google Scholar 

  40. Singh R, Xiang Y, Wang Y, Baikati K, Cuervo AM, Luu YK et al. Autophagy regulates adipose mass and differentiation in mice. J Clin Invest 2009; 119: 3329–3339.

    Article  CAS  Google Scholar 

  41. Romanatto T, Roman EA, Arruda AP, Denis RG, Solon C, Milanski M et al. Deletion of tumor necrosis factor-alpha-receptor 1 (TNFR1) protects against diet-induced obesity by means of increased thermogenesis. J Biol Chem 2009; 284: 36213–36222.

    Article  CAS  Google Scholar 

  42. Chiang SH, Bazuine M, Lumeng CN, Geletka LM, Mowers J, White NM et al. The protein kinase IKKepsilon regulates energy balance in obese mice. Cell 2009; 138: 961–975.

    Article  CAS  Google Scholar 

  43. Pan D, Fujimoto M, Lopes A, Wang YX . Twist-1 is a PPARdelta-inducible, negative-feedback regulator of PGC-1alpha in brown fat metabolism. Cell 2009; 137: 73–86.

    Article  CAS  Google Scholar 

  44. Toh SY, Gong J, Du G, Li JZ, Yang S, Ye J et al. Up-regulation of mitochondrial activity and acquirement of brown adipose tissue-like property in the white adipose tissue of fsp27 deficient mice. PloS one 2008; 3: e2890.

    Article  Google Scholar 

  45. Leonardsson G, Steel JH, Christian M, Pocock V, Milligan S, Bell J et al. Nuclear receptor corepressor RIP140 regulates fat accumulation. Proc Natl Acad Sci USA 2004; 101: 8437–8442.

    Article  CAS  Google Scholar 

  46. Hallberg M, Morganstein DL, Kiskinis E, Shah K, Kralli A, Dilworth SM et al. A functional interaction between RIP140 and PGC-1alpha regulates the expression of the lipid droplet protein CIDEA. Mol Cell Biol 2008; 28: 6785–6795.

    Article  CAS  Google Scholar 

  47. Seale P, Kajimura S, Yang W, Chin S, Rohas LM, Uldry M et al. Transcriptional control of brown fat determination by PRDM16. Cell Metab 2007; 6: 38–54.

    Article  CAS  Google Scholar 

  48. Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 2008; 454: 961–967.

    Article  CAS  Google Scholar 

  49. Atit R, Sgaier SK, Mohamed OA, Taketo MM, Dufort D, Joyner AL et al. Beta-catenin activation is necessary and sufficient to specify the dorsal dermal fate in the mouse. Dev Biol 2006; 296: 164–176.

    Article  CAS  Google Scholar 

  50. Timmons JA, Wennmalm K, Larsson O, Walden TB, Lassmann T, Petrovic N et al. Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proc Natl Acad Sci USA 2007; 104: 4401–4406.

    Article  CAS  Google Scholar 

  51. Kajimura S, Seale P, Kubota K, Lunsford E, Frangioni JV, Gygi SP et al. Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-beta transcriptional complex. Nature 2009; 460: 1154–1158.

    Article  CAS  Google Scholar 

  52. Himms-Hagen J, Melnyk A, Zingaretti MC, Ceresi E, Barbatelli G, Cinti S . Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. Am J Physiol Cell Physiol 2000; 279: C670–C681.

    Article  CAS  Google Scholar 

  53. Xue B, Rim JS, Hogan JC, Coulter AA, Koza RA, Kozak LP . Genetic variability affects the development of brown adipocytes in white fat but not in interscapular brown fat. J Lipid Res 2007; 48: 41–51.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I apologize that I was unable to cite a number of papers that have contributed to this field because of space limitations. I thank Dr Jeff Ishibashi and Dr Wenli Yang for discussions and careful reading of the paper. This work is supported by a NIH grant to PS (DK081605) and by the DERC at the University of Pennsylvania from a grant sponsored by NIH DK 19525.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Seale.

Ethics declarations

Competing interests

The author declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seale, P. Transcriptional control of brown adipocyte development and thermogenesis. Int J Obes 34 (Suppl 1), S17–S22 (2010). https://doi.org/10.1038/ijo.2010.178

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2010.178

Keywords

This article is cited by

Search

Quick links