Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Overview
  • Published:

Biology of brown adipose tissue: view from the chair

Abstract

Brown adipose tissue is generally referred to as a specialized adipose tissue, as it presents many features of an adipose tissue. However, its specific morphology, innervation, vascularization and body location, as well as its unique physiological role in regulatable thermogenesis, highlight its peculiarity. Whereas the mechanism for energy dissipation by brown adipocytes as heat was elucidated several years ago, recent work has advanced our knowledge of these cells in terms of precursors, cell lineage and transcriptional regulators. The discovery of a proximity at the developmental level between brown adipocytes and myocytes will influence future research on human brown adipocytes with the aim of facilitating the burning of fatty acids in order to prevent or alleviate certain metabolic diseases.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Locke RM, Rial E, Nicholls DG . The acute regulation of mitochondrial proton conductance in cells and mitochondria from the brown fat of cold-adapted and warm-adapted guinea pigs. Eur J Biochem 1982; 129: 381–387.

    Article  CAS  Google Scholar 

  2. Cannon B, Nedergaard J . Brown adipose tissue: function and physiological significance. Physiol Rev 2004; 84: 277–359.

    Article  CAS  Google Scholar 

  3. Himms-Hagen J, Ricquier D . Brown adipose tissue. In: Bray G, Bouchard C, James WPT (eds). Handbook of Obesity. Marcel Dekker: New York, NY, USA, 1997, pp 415–441.

    Google Scholar 

  4. Enerbäck S, Jacobsson A, Simpson EM, Guerra C, Yamashita H, Harper M-E et al. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 1997; 387: 90–94.

    Article  Google Scholar 

  5. Golozoubova V, Hohtola E, Matthias A, Jacobsson A, Cannon B, Nedergaard J . Only UCP1 can mediate adaptive nonshivering thermogenesis in the cold. FASEB J 2001; 15: 2048–2050.

    Article  CAS  Google Scholar 

  6. Mory G, Ricquier D, Néchad M, Hémon P . Impairment of trophic response of brown fat to cold in guanethidine-treated rats. Am J Physiol 1982; 242: C159–C165.

    Article  CAS  Google Scholar 

  7. Géloën A, Collet AJ, Guay G, Bukowiecki LJ . Beta-Adrenergic stimulation of brown adipocyte proliferation. Am J Physiol 1988; 254: C175–C182.

    Article  Google Scholar 

  8. Himms-Hagen J, Melnyk A, Zingaretti MC, Ceresi E, Barbatelli G, Cinti S . Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. Am J Physiol Cell Physiol 2000; 279: C670–C681.

    Article  CAS  Google Scholar 

  9. Timmons JA, Wennmalm K, Larsson O, Walden TB, Lassmann T, Petrovic N et al. Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proc Natl Acad Sci USA 2007; 104: 4401–4406.

    Article  CAS  Google Scholar 

  10. Crisan M, Casteilla L, Lehr L, Carmona M, Paoloni-Giacobino A, Yap S et al. A reservoir of brown adipocyte progenitors in human skeletal muscle. Stem Cells 2008; 9: 2425–2433.

    Article  Google Scholar 

  11. Hasty P, Bradley A, Morris JH, Edmondson DG, Venuti JM, Olson EN et al. Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature 1993; 364: 501–516.

    Article  CAS  Google Scholar 

  12. Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 2008; 454: 961–967.

    Article  CAS  Google Scholar 

  13. Barbera MJ, Schluter A, Pedraza N, Iglesias R, Villarroya F, Giralt M . Peroxisome proliferator-activated receptor alpha activates transcription of the brown fat uncoupling protein-1 gene. A link between regulation of the thermogenic and lipid oxidation pathways in the brown fat cell. J Biol Chem 2001; 276: 1486–1493.

    Article  CAS  Google Scholar 

  14. Tiraby C, Tavernier G, Lefort C, Larrouy D, Bouillaud F, Ricquier D et al. Acquirement of brown fat cell features by human white adipocytes. J Biol Chem 2003; 278: 33370–33376.

    Article  CAS  Google Scholar 

  15. Cederberg A, Gronning LM, Ahren B, Tasken K, Carlsson P, Enerback S . FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet-induced insulin resistance. Cell 2001; 106: 563–573.

    Article  CAS  Google Scholar 

  16. Cinti S . Reversible physiological transdifferentiation in the adipose organ. Proc Nutr Soc 2009; 68: 340–349.

    Article  Google Scholar 

  17. Lehr L, Canola K, Léger B, Giacobino JP . Differentiation and characterization in primary culture of white adipose tissue brown adipocyte-like cells. Int J Obes 2009; 33: 680–686.

    Article  CAS  Google Scholar 

  18. Koza RA, Hohmann SM, Guerra C, Rossmeisl M, Kozak LP . Synergistic gene interactions control the induction of the mitochondrial uncoupling protein (Ucp1) gene in white fat tissue. J Biol Chem 2000; 275: 34486–34492.

    Article  CAS  Google Scholar 

  19. Xue B, Rim JS, Hogan JC, Coulter AA, Koza RA, Kozak LP . Genetic variability affects the development of brown adipocytes in white fat but not in interscapular brown fat. J Lipid Res 2007; 48: 41–51.

    Article  CAS  Google Scholar 

  20. Anunciado-Koza R, Ukropec J, Koza RA, Kozak LP . Inactivation of UCP1 and the glycerol phosphate cycle synergistically increases energy expenditure to resist diet-induced obesity. J Biol Chem 2008; 283: 27688–27697.

    Article  CAS  Google Scholar 

  21. Wang H, Zhang Y, Yehuda-Shnaidman E, Medvedev AV, Kumar N, Daniel KW et al. Liver X receptor alpha is a transcriptional repressor of the uncoupling protein 1 gene and the brown fat phenotype. Mol Cell Biol 2008; 28: 2187–2200.

    Article  CAS  Google Scholar 

  22. Ricquier D, Néchad M, Mory G . Ultrastructural and biochemical characterization of human brown adipose tissue in pheochromocytoma. J Clin Endocrinol Metab 1982; 54: 805–807.

    Google Scholar 

  23. Kortelainen ML, Pelletier G, Ricquier D, Bukowiecki LJ . Immunohisto-chemical detection of human brown adipose tissue uncoupling protein in an autopsy series. J Histochem Cytochem 1993; 41: 759–764.

    Article  CAS  Google Scholar 

  24. Garruti G, Ricquier D . Analysis of uncoupling protein and its mRNA in adipose tissue deposits of adult humans. Int J Obesity 1992; 16: 383–390.

    CAS  Google Scholar 

  25. Lean ME, James WP, Jennings G, Trayhurn P . Brown adipose tissue uncoupling protein content in human infants, children and adults. Clin Sci 1986; 71: 291–297.

    Article  CAS  Google Scholar 

  26. Champigny O, Holloway BR, Ricquier D . Regulation of UCP gene expression in brown adipocytes differentiated in primary culture—effects of a new β-adrenoceptor agonist. Mol Cell Endocrinol 1992; 86: 73–82.

    Article  CAS  Google Scholar 

  27. Nedergaard J, Bengtsson T, Cannon B . Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol 2007; 293: E444–E452.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Ricquier.

Ethics declarations

Competing interests

The author declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ricquier, D. Biology of brown adipose tissue: view from the chair. Int J Obes 34 (Suppl 1), S3–S6 (2010). https://doi.org/10.1038/ijo.2010.176

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2010.176

Keywords

This article is cited by

Search

Quick links