Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Suicidal gene therapy in an NF-κB-controlled tumor environment as monitored by a secreted blood reporter

Abstract

The nuclear factor-κB (NF-κB) is known to be activated in many cancer types including lung, ovarian, astrocytomas, melanoma, prostate as well as glioblastoma, and has been shown to correlate with disease progression. We have cloned a novel NF-κB-based reporter system (five tandem repeats of NF-κB responsive genomic element (NF; 14 bp each)) to drive the expression cassette for both a fusion between the yeast cytosine deaminase and uracil phosphoribosyltransferase (CU) as a therapeutic gene and the secreted Gaussia luciferase (Gluc) as a blood reporter, separated by an internal ribosomal entry site (NF-CU-IGluc). We showed that malignant tumor cells have high expression of Gluc, which correlates to high activation of NF-κB. When NF-κB was further activated by tumor necrosis factor-α in these cells, we observed up to 10-fold increase in Gluc levels and therefore transgene expression in human glioma cells served to greatly enhance the sensitization of these cells to the prodrug, 5-fluorocytosine both in cultured cells and in vivo subcutaneous tumor xenograft model. This inducible system provides a tool to enhance the expression of imaging and therapeutic genes for cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Gu J, Kagawa S, Takakura M, Kyo S, Inoue M, Roth JA et al. Tumor-specific transgene expression from the human telomerase reverse transcriptase promoter enables targeting of the therapeutic effects of the Bax gene to cancers. Cancer Res 2000; 60: 5359–5364.

    CAS  PubMed  Google Scholar 

  2. Lidor YJ, Lee WE, Nilson JH, Maxwell IH, Su LJ, Brand E et al. In vitro expression of the diphtheria toxin A-chain gene under the control of human chorionic gonadotropin gene promoters as a means of directing toxicity to ovarian cancer cell lines. Am J Obstet Gynecol 1997; 177: 579–585.

    Article  CAS  PubMed  Google Scholar 

  3. Mueller H . Tumor necrosis factor as an antineoplastic agent: pitfalls and promises. Cell Mol Life Sci 1998; 54: 1291–1298.

    Article  CAS  PubMed  Google Scholar 

  4. King GD, Curtin JF, Candolfi M, Kroeger K, Lowenstein PR, Castro MG . Gene therapy and targeted toxins for glioma. Curr Gene Ther 2005; 5: 535–557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Both GW . Recent progress in gene-directed enzyme prodrug therapy: an emerging cancer treatment. Curr Opin Mol Ther 2009; 11: 421–432.

    CAS  PubMed  Google Scholar 

  6. Connors TA . The choice of prodrugs for gene directed enzyme prodrug therapy of cancer. Gene Therapy 1995; 2: 702–709.

    CAS  PubMed  Google Scholar 

  7. Denny WA . Prodrugs for gene-directed enzyme-prodrug therapy (suicide Gene therapy). J Biomed Biotechnol 2003; 2003: 48–70.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Khatri A, Russell PJ . Targeted, gene-directed enzyme prodrug therapies to tackle diversity and aggression of late stage prostate cancer. Discov Med 2007; 7: 39–45.

    PubMed  Google Scholar 

  9. Moolten FL, Wells JM, Heyman RA, Evans RM . Lymphoma regression induced by ganciclovir in mice bearing a herpes thymidine kinase transgene. Hum Gene Ther 1990; 1: 125–134.

    Article  CAS  PubMed  Google Scholar 

  10. Dilber MS, Abedi MR, Christensson B, Bjorkstrand B, Kidder GM, Naus CC et al. Gap junctions promote the bystander effect of herpes simplex virus thymidine kinase in vivo. Cancer Res 1997; 57: 1523–1528.

    CAS  PubMed  Google Scholar 

  11. Mesnil M, Piccoli C, Tiraby G, Willecke K, Yamasaki H . Bystander killing of cancer cells by herpes simplex virus thymidine kinase gene is mediated by connexins. Proc Natl Acad Sci USA 1996; 93: 1831–1835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hirschowitz EA, Ohwada A, Pascal WR, Russi TJ, Crystal RG . In vivo adenovirus-mediated gene transfer of the Escherichia coli cytosine deaminase gene to human colon carcinoma-derived tumors induces chemosensitivity to 5-fluorocytosine. Hum Gene Ther 1995; 6: 1055–1063.

    Article  CAS  PubMed  Google Scholar 

  13. Mullen CA, Kilstrup M, Blaese RM . Transfer of the bacterial gene for cytosine deaminase to mammalian cells confers lethal sensitivity to 5-fluorocytosine: a negative selection system. Proc Natl Acad Sci USA 1992; 89: 33–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rowley S, Lindauer M, Gebert JF, Haberkorn U, Oberdorfer F, Moebius U et al. Cytosine deaminase gene as a potential tool for the genetic therapy of colorectal cancer. J Surg Oncol 1996; 61: 42–48.

    Article  CAS  PubMed  Google Scholar 

  15. Gusella M, Frigo AC, Bolzonella C, Marinelli R, Barile C, Bononi A et al. Predictors of survival and toxicity in patients on adjuvant therapy with 5-fluorouracil for colorectal cancer. Br J Cancer 2009; 100: 1549–1557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Andersen PS, Smith JM, Mygind B . Characterization of the upp gene encoding uracil phosphoribosyltransferase of Escherichia coli K12. Eur J Biochem 1992; 204: 51–56.

    Article  CAS  PubMed  Google Scholar 

  17. Adachi Y, Tamiya T, Ichikawa T, Terada K, Ono Y, Matsumoto K et al. Experimental gene therapy for brain tumors using adenovirus-mediated transfer of cytosine deaminase gene and uracil phosphoribosyltransferase gene with 5-fluorocytosine. Hum Gene Ther 2000; 11: 77–89.

    Article  CAS  PubMed  Google Scholar 

  18. Hamstra DA, Rice DJ, Fahmy S, Ross BD, Rehemtulla A . Enzyme/prodrug therapy for head and neck cancer using a catalytically superior cytosine deaminase. Hum Gene Ther 1999; 10: 1993–2003.

    Article  CAS  PubMed  Google Scholar 

  19. Kievit E, Bershad E, Ng E, Sethna P, Dev I, Lawrence TS et al. Superiority of yeast over bacterial cytosine deaminase for enzyme/prodrug gene therapy in colon cancer xenografts. Cancer Res 1999; 59: 1417–1421.

    CAS  PubMed  Google Scholar 

  20. Baud V, Karin M . Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov 2009; 8: 33–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S et al. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 2004; 431: 461–466.

    Article  CAS  PubMed  Google Scholar 

  22. Karin M, Greten FR . NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 2005; 5: 749–759.

    Article  CAS  PubMed  Google Scholar 

  23. Brach MA, Hass R, Sherman ML, Gunji H, Weichselbaum R, Kufe D . Ionizing radiation induces expression and binding activity of the nuclear factor kappa B. J Clin Invest 1991; 88: 691–695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Greenberg H, Ye X, Wilson D, Htoo AK, Hendersen T, Liu SF . Chronic intermittent hypoxia activates nuclear factor-kappaB in cardiovascular tissues in vivo. Biochem Biophys Res Commun 2006; 343: 591–596.

    Article  CAS  PubMed  Google Scholar 

  25. Dachs GU, Dougherty GJ, Stratford IJ, Chaplin DJ . Targeting gene therapy to cancer: a review. Oncol Res 1997; 9: 313–325.

    CAS  PubMed  Google Scholar 

  26. Badr CE, Niers JM, Tjon-Kon-Fat LA, Noske DP, Wurdinger T, Tannous BA . Real-time monitoring of nuclear factor kappaB activity in cultured cells and in animal models. Mol Imaging 2009; 8: 278–290.

    Article  CAS  PubMed  Google Scholar 

  27. Tannous BA . Gaussia luciferase reporter assay for monitoring biological processes in culture and in vivo. Nat Protoc 2009; 4: 582–591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wurdinger T, Badr C, Pike L, de Kleine R, Weissleder R, Breakefield XO et al. A secreted luciferase for ex vivo monitoring of in vivo processes. Nat Methods 2008; 5: 171–173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Guo RX, Qiao YH, Zhou Y, Li LX, Shi HR, Chen KS . Increased staining for phosphorylated AKT and nuclear factor-kappaB p65 and their relationship with prognosis in epithelial ovarian cancer. Pathol Int 2008; 58: 749–756.

    Article  CAS  PubMed  Google Scholar 

  30. Korkolopoulou P, Levidou G, Saetta AA, El-Habr E, Eftichiadis C, Demenagas P et al. Expression of nuclear factor-kappaB in human astrocytomas: relation to pI kappa Ba, vascular endothelial growth factor, Cox-2, microvascular characteristics, and survival. Hum Pathol 2008; 39: 1143–1152.

    Article  CAS  PubMed  Google Scholar 

  31. McNulty SE, del Rosario R, Cen D, Meyskens Jr FL, Yang S . Comparative expression of NFkappaB proteins in melanocytes of normal skin vs benign intradermal naevus and human metastatic melanoma biopsies. Pigment Cell Res 2004; 17: 173–180.

    Article  CAS  PubMed  Google Scholar 

  32. Shukla S, MacLennan GT, Fu P, Patel J, Marengo SR, Resnick MI et al. Nuclear factor-kappaB/p65 (Rel A) is constitutively activated in human prostate adenocarcinoma and correlates with disease progression. Neoplasia 2004; 6: 390–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Smith D, Shimamura T, Barbera S, Bejcek BE . NF-kappaB controls growth of glioblastomas/astrocytomas. Mol Cell Biochem 2008; 307: 141–147.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang Z, Ma J, Li N, Sun N, Wang C . Expression of nuclear factor-kappaB and its clinical significance in nonsmall-cell lung cancer. Ann Thorac Surg 2006; 82: 243–248.

    Article  PubMed  Google Scholar 

  35. Yu M, Han J, Cui P, Dai M, Li H, Zhang J et al. Cisplatin up-regulates ICAM-1 expression in endothelial cell via a NF-kappaB dependent pathway. Cancer Sci 2008; 99: 391–397.

    Article  CAS  PubMed  Google Scholar 

  36. Das KC, White CW . Activation of NF-kappaB by antineoplastic agents. Role of protein kinase C. J Biol Chem 1997; 272: 14914–14920.

    Article  CAS  PubMed  Google Scholar 

  37. Hwang S, Ding A . Activation of NF-kappa B in murine macrophages by taxol. Cancer Biochem Biophys 1995; 14: 265–272.

    CAS  PubMed  Google Scholar 

  38. Hernández-Vargas H, Rodríguez-Pinilla SM, Julián-Tendero M, Sánchez-Rovira P, Cuevas C, Antón A et al. Gene expression profiling of breast cancer cells in response to gemcitabine: NF-kappaB pathway activation as a potential mechanism of resistance. Breast Cancer Res Treat 2007; 102: 157–172.

    Article  PubMed  Google Scholar 

  39. Bessho A, Ueoka H, Kiura K, Tabata M, Sunami K, Katayama Y et al. High-dose ifosfamide, carboplatin and etoposide with autologous peripheral blood progenitor cell transplantation for small-cell lung cancer. Anticancer Res 1999; 19: 693–698.

    CAS  PubMed  Google Scholar 

  40. Hampl J, Brown A, Rainov N, Breakefield XO . Methods for gene delivery to neural tissue. In: Chin HR, Moldin SO (eds), Methods in Genomic Neuroscience. CRC Press: Baton Rouge, FL, 2001, pp 229–265.

    Google Scholar 

  41. Dong Y, Wen P, Manome Y, Parr M, Hirshowitz A, Chen L et al. In vivo replication-deficient adenovirus vector-mediated transduction of the cytosine deaminase gene sensitizes glioma cells to 5- fluorocytosine. Hum Gene Ther 1996; 7: 713–720.

    Article  CAS  PubMed  Google Scholar 

  42. Shah K, Jacobs A, Breakefield XO, Weissleder R . Molecular imaging of gene therapy for cancer. Gene Therapy 2004; 11: 1175–1187.

    Article  CAS  PubMed  Google Scholar 

  43. Briat A, Vassaux G . Preclinical applications of imaging for cancer gene therapy. Expert Rev Mol Med 2006; 8: 1–19.

    Article  PubMed  Google Scholar 

  44. Contag CH, Ross BD . It's not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology. J Magn Reson Imaging 2002; 16: 378–387.

    Article  PubMed  Google Scholar 

  45. Gross S, Piwnica-Worms D . Spying on cancer: molecular imaging in vivo with genetically encoded reporters. Cancer Cell 2005; 7: 5–15.

    CAS  PubMed  Google Scholar 

  46. Min JJ, Gambhir SS . Gene therapy progress and prospects: noninvasive imaging of gene therapy in living subjects. Gene Therapy 2004; 11: 115–125.

    Article  CAS  PubMed  Google Scholar 

  47. Xing L, Deng X, Kotedia K, Ackerstaff E, Ponomarev V, Clifton Ling C et al. Non-invasive molecular and functional imaging of cytosine deaminase and uracil phosphoribosyltransferase fused with red fluorescence protein. Acta Oncol 2008; 47: 1211–1220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Weissleder R . A clearer vision for in vivo imaging. Nat Biotechnol 2001; 19: 316–317.

    Article  CAS  PubMed  Google Scholar 

  49. Martuza RL, Eldridge R . Neurofibromatosis 2 (bilateral acoustic neurofibromatosis). N Engl J Med 1988; 318: 684–688.

    Article  CAS  PubMed  Google Scholar 

  50. Chung JH, Whiteley M, Felsenfeld G . A 5′ element of the chicken beta-globin domain serves as an insulator in human erythroid acells and protects against position effect in Drosophila. Cell 1993; 74: 505–514.

    Article  CAS  PubMed  Google Scholar 

  51. Tannous BA, Kim DE, Fernandez JL, Weissleder R, Breakefield XO . Codon-optimized Gaussia luciferase cDNA for mammalian gene expression in culture and in vivo. Mol Ther 2005; 11: 435–443.

    Article  CAS  PubMed  Google Scholar 

  52. Sena-Esteves M, Tebbets JC, Steffens S, Crombleholme T, Flake AW . Optimized large-scale production of high titer lentivirus vector pseudotypes. J Virol Methods 2004; 122: 131–139.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Cancer Institute (P50 CA86355), the National Institute of Neurological Disorders (P30 NS045776) as well as the Frem Foundation. We would like to thank: Mr Neemat Frem (Indevco Group Sal, Lebanon) for providing guidance throughout the multiple design phases of the project; Miss Lee-Ann Tjon-Kon-Fat and Lisa Pike for technical assistance; Dr Miguel Sena-Esteves for help with designing the lentivirus vector; and Dr Xandra Breakefield for advice and critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B A Tannous.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badr, C., Niers, J., Morse, D. et al. Suicidal gene therapy in an NF-κB-controlled tumor environment as monitored by a secreted blood reporter. Gene Ther 18, 445–451 (2011). https://doi.org/10.1038/gt.2010.156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2010.156

Keywords

This article is cited by

Search

Quick links