Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Long-term control of neuropathic pain in a non-viral gene therapy paradigm

Abstract

Traditional approaches to treating chronic neuropathic pain largely focus on manipulations directly altering neuronal activity or neuron-to-neuron communication. Recently, however, it has become clear that glial cells (including microglia and astroglia) play a significant role in pain expression in a variety of neuropathic pain models. Multiple aspects of the inflammatory response of glial cells, commonly observed in neuropathic pain conditions, have been implicated in pain expression. Thus, glial cell inflammation has emerged as a potential therapeutic target in neuropathic pain. Our laboratory has been exploring the use of an anti-inflammatory cytokine, interleukin-10 (IL-10), to control glial inflammatory activation thereby controlling neuropathic pain. IL-10 protein delivery is limited by a short half-life and an inability to cross into the central nervous system from the periphery, making a centrally delivered gene therapy approach attractive. We have recently characterized a non-viral gene therapy approach using two injections of naked DNA to achieve long-term (>3 months) control of neuropathic pain in a peripheral nerve injury model. Timing and dose requirements leading to long-term pain control are discussed in this review, as is recent work using microparticle-encapsulated DNA to achieve long-term therapeutic efficacy with a single injection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Macleod M, Stewart G, Zeidler M, Will R, Knight R . Sensory features of variant Creutzfeldt-Jakob disease. J Neurol 2002; 249: 706–711.

    Article  PubMed  Google Scholar 

  2. Osterberg A, Boivie J, Thuomas K . Central pain in multiple sclerosis—prevalence and clinical characteristics. Eur J Pain 2005; 9: 531–542.

    Article  CAS  PubMed  Google Scholar 

  3. Kenner M, Menon U, Elliott D . Multiple Sclerosis as a painful disease. Int Rev Neurobiol 2007; 79: 303–321.

    Article  PubMed  Google Scholar 

  4. Jensen M, Kuehn C, Amtmann D, Cardenas D . Symptom burden in persons with spinal cord injury. Arch Phys Med Rehab 2007; 88: 638–645.

    Article  Google Scholar 

  5. Rowbotham M, Fields H . The relationship of pain, allodynia, and thermal sensation in post-herpetic neuralgia. Brain 1996; 119: 347–354.

    Article  PubMed  Google Scholar 

  6. Milligan E, Twinning C, Chacur M, Biedenkapp J, O’Connor K, Poole S et al. Spinal glia and proinflammatory cytokines mediate mirror-image neuropathic pain in rats. J Neurosci 2003; 23: 1026–1040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Watkins L, Milligan E, Maier S . Glial proinflammatory cytokines mediate exaggerated pain states: implications for clinical pain. Adv Exp Med Biol 2003; 521: 1–21.

    CAS  PubMed  Google Scholar 

  8. Tsuda M, Inoue K, Salter M . Neuropathic pain and spinal microglia: a big problem from molecules in ‘small’ glia. Trends Neurosci 2005; 28: 101–107.

    Article  CAS  PubMed  Google Scholar 

  9. McMahon S, Cafferty W, Marchand F . Immune and glial cell factors as pain mediators and modulators. Exp Neurol 2005; 192: 444–462.

    Article  CAS  PubMed  Google Scholar 

  10. DeLeo J, Tawfik V, LaCroix-Fralish M . The tetrapartite synapse: path to CNS sensitization and chronic pain. Pain 2006; 122: 17–21.

    Article  CAS  Google Scholar 

  11. Benveniste E . Cytokines: influence on glial cell gene expression and function. Neuroimmunoendocrinology 1997; 69: 31–75.

    Article  CAS  Google Scholar 

  12. Milligan E, Sloane E, Watkins L . Glia in pathological pain: a role for fractalkine. J Neuroimmunol 2008; 198: 113–120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Araque A, Perea G . Glial modulation of synaptic transmission in culture. Glia 2004; 47: 241–248.

    Article  PubMed  Google Scholar 

  14. Ren K, Dubner R . Neuron-glia crosstalk gets serious: role in pain hypersensitivity. Curr Opin Anaesthesiol 2008; 21: 570–579.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sun X, Chen W, Li S, Cai J, Li W, Xian X et al. Fluorocitrate, an inhibitor of glial metabolism, inhibits the up-regulation of NOS expression, activity and NO production in the spinal cord induced by formalin test in rats. Neurochem Res 2009; 34: 351–359.

    Article  CAS  PubMed  Google Scholar 

  16. Holguin A, O’Connor K, Biedenkapp J, Campisi J, Wieseler-Frank J, Milligan E et al. HIV-1 gp120 stimulates proinflammatory cytokine-mediated pain facilitation via activation of nitric oxide synthase-1 (nNOS). Pain 2004; 110: 517–530.

    Article  CAS  PubMed  Google Scholar 

  17. Viviani B, Bartesaghi S, Gardoni F, Vezzani A, Behrens M, Bartfai T et al. Interleukin-1beta enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J Neurosci 2003; 23: 8692–8700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gong Q, Li Y, Xin W, Zang Y, Ren W, Wei X et al. ATP induces long-term potentiation of C-fiber-evoked field potentials in spinal dorsal horn: the roles of P2X(4) receptors and p38 MAPK in microglia. Glia 2008; doi:10.1002/glia.20786.

  19. Jabs R, Seifert G, Steinhauser C . Astrocytic function and its alteration in the epileptic brain. Epilepsia 2008; 49: 3–12.

    Article  CAS  PubMed  Google Scholar 

  20. Xing G, Liu F, Qu X, Han J, Wan Y . Long-term synaptic plasticity in the spinal dorsal horn and its modulation by electroacupunture in rats with neuropathic pain. Exp Neurol 2007; 208: 323–332.

    Article  PubMed  Google Scholar 

  21. Gwak Y, Kang J, Leem J, Hulsebosch C . Spinal AMPA receptor inhibition attenuates mechanical allodynia and neuronal hyperexcitability following spinal cord injury in rats. J Neurosci Res 2007; 85: 2352–2359.

    Article  CAS  PubMed  Google Scholar 

  22. Waxman S, Hains B . Fire and phantoms after spinal cord injury: Na+ channels and central pain. Trends Neurosci 2006; 29: 207–215.

    Article  CAS  PubMed  Google Scholar 

  23. Ledeboer A, Breve J, Poole S, Tilders F, Dam AV . Interleukin-10, interleukin-4, and transforming growth factor-beta differentially regulate lipopolysaccharide-induced production of pro-inflammatory cytokines and nitric oxide in co-cultures of rat astroglial and microglial cells. Glia 2000; 30: 134–142.

    Article  CAS  PubMed  Google Scholar 

  24. Strle K, Zhou J, Shen W, Broussard S, Johnson R, Freund G et al. Interleukin-10 in the brain. Crit Rev Immunol 2001; 21: 427–449.

    Article  CAS  PubMed  Google Scholar 

  25. Marques CP, Hu S, Sheng W, Cheeran MC-J, Cox D, Lokensgard JR . Interleukin-10 attenuates production of HSV-induced inflammatory mediators by human microglia. Glia 2004; 47: 358–366.

    Article  PubMed  Google Scholar 

  26. Moore K, Malefyt R, Coffman R, O’Garra A . Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 2001; 19: 683–765.

    Article  CAS  PubMed  Google Scholar 

  27. Plunkett J, Yu C, Easton J, Bethea J, Yezierski R . Effects of interleukin-10 (IL-10) on pain behavior and gene expression following excitotoxic spinal cord injury in the rat. Exp Neurol 2001; 168: 144–154.

    Article  CAS  PubMed  Google Scholar 

  28. Schif-Zuck S, Wildbaum G, Karin N . Coadministration of plasmid DNA constructs encoding an encephalitogenic determinant and IL-10 elicits regulatory T cell-mediated protective immunity in the central nervous system. J Immunol 2006; 177: 8241–8247.

    Article  CAS  PubMed  Google Scholar 

  29. Milligan E, Soderquist R, Malone S, Mahoney J, Hughes T, Langer S et al. Intrathecal polymer-based interleukin-10 gene delivery for neuropathic pain. Neuron Glia Biology 2006; 2: 293–308.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sloane E, Ledeboer A, Seibert W, Coats B, van Strien M, Maier S et al. Anti-inflammatory cytokine gene therapy decreases sensory and motor dysfunction in experimental Multiple Sclerosis. Brain Behav Immun 2009; 23: 92–100.

    Article  CAS  PubMed  Google Scholar 

  31. Ledeboer A, Wierinckx A, Bol J, Floris S, de Lavalette R, de Vries H et al. Regional and temporal expression patterns of interleukin-10, interleukin-10 receptor and adhesion molecules in the rat spinal cord during chronic relapsing EAE. J Neuroimmunol 2003; 136: 94–103.

    Article  CAS  PubMed  Google Scholar 

  32. Milligan E, Langer S, Sloane E, He L, Wieseler-Frank J, O’Connor K et al. Controlling pathological pain by adenovirally driven spinal production of the anti-inflammatroy cytokine, interleukin-10. Eur J Neurosci 2005; 21: 2136–2148.

    Article  PubMed  Google Scholar 

  33. Storek B, Reinhardt M, Wang C, Janssen W, Harder N, Banck M et al. Sensory neuron targeting by self-complementary AAV8 via lumbar puncture for chronic pain. PNAS 2008; 105: 1055–1060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou Z, Peng X, Hao S, Fink D, Mata M . HSV-mediated transfer of interleukin-10 reduces inflammatory pain through modulation of membrane tumor necrosis factor α in spinal cord microglia. Gene Therapy 2008; 15: 183–190.

    Article  CAS  PubMed  Google Scholar 

  35. Milligan E, Sloane E, Langer S, Cruz P, Chacur M, Spataro L et al. Controlling neuropathic pain by adeno-associated virus driven production of the anti-inflammatory cytokine, interleukin-10. Mol Pain 2005; 1: 9; doi:10.1186/1744-8069-1181-1189.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Driesse M, Esandi M, Kros J, Avezaat C, Vecht C, Zurcher C et al. Intra-CSF administered recombinant adenovirus causes an immune response-mediated toxicity. Gene Therapy 2000; 7: 1401–1409.

    Article  CAS  PubMed  Google Scholar 

  37. Zaiss A, Muruve D . Immune responses to adeno-associated virus vectors. Curr Gene Ther 2005; 5: 323–331.

    Article  CAS  PubMed  Google Scholar 

  38. Sloane E, Langer S, Jekich B, Mahoney J, Hughes T, Seibert W et al. Immunological priming potentiates non-viral anti-inflammatory gene therapy treatment of neuropathic pain. In Revision 2008.

  39. Milligan E, Sloane E, Langer S, Hughes T, Jekich B, Frank M et al. Repeated intrathecal injections of plasmid DNA encoding interleukin-10 produce prolonged reversal of neuropathic pain. Pain 2006; 126: 294–308.

    Article  CAS  PubMed  Google Scholar 

  40. Ledboer A, Jekich B, Sloane E, Mahoney J, Langer S, Milligan E et al. Intrathecal interleukin-10 gene therapy attenuates paclitaxel-induced mechanical allodynia and proinflammatory cytokine expression in dorsal root ganglia in rats. Brain Behav Immun 2007; 21: 686–698.

    Article  Google Scholar 

  41. Soderquist R, Sloane E, Harrison J, Loram L, Lewis M, Chavez R et al. Microparticle mediated therapeutic pDNA delivery facilitates long term reversal of neuropathic pain following a single intrathecal administration. In Preparation 2008.

  42. Schwab C, McGeer P . Inflammatory aspects of Alzheimer disease and other neurodegenerative disorders. J Alzheimers Dis 2008; 13: 359–369.

    Article  CAS  PubMed  Google Scholar 

  43. Boillee S, Velde C, Cleveland D . ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 2006; 52: 39–59.

    Article  CAS  PubMed  Google Scholar 

  44. Zeng H-Y, Green W, Tso M . Microglial activation in human diabetic retinopathy. Arch Ophthalmol 2008; 126: 227–232.

    Article  PubMed  Google Scholar 

  45. Tsuda M, Ueno H, Kataoka A, Tozaki-Saitoh H, Inoue K . Activation of dorsal horn microglia contributes to diabetes-induced tactile allodynia via extracellular signal-related protein kinase signaling. Glia 2008; 56: 378–386.

    Article  PubMed  Google Scholar 

  46. Daulhac L, Mallet C, Couteix C, Etienne M, Duroux E, Privat A et al. Diabetes-induced mechanical hyperalgesia involves spinal mitogen-activated protein kinase activation in neurons and microglia via N-Methyl-D-aspartate-dependent mechanisms. Mol Pharmacol 2006; 70: 1246–1254.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support to the study was provided by NIH Grants DA018156, DA024044, DA015642, DA015656 and Avigen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E D Milligan.

Additional information

This work was conducted at the University of Colorado, Boulder, CO, USA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sloane, E., Soderquist, R., Maier, S. et al. Long-term control of neuropathic pain in a non-viral gene therapy paradigm. Gene Ther 16, 470–475 (2009). https://doi.org/10.1038/gt.2009.21

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2009.21

Keywords

This article is cited by

Search

Quick links