Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

An efficient rHSV-based complementation system for the production of multiple rAAV vector serotypes

Abstract

Recombinant herpes simplex virus type 1 (rHSV)-assisted recombinant adeno-associated virus (rAAV) vector production provides a highly efficient and scalable method for manufacture of clinical grade rAAV vectors. Here, we present an rHSV co-infection system for rAAV production, which uses two ICP27-deficient rHSV constructs, one bearing the rep2 and cap (1, 2 or 9) genes of rAAV, and the second bearing an AAV2 ITR-gene of interest (GOI) cassette. The optimum rAAV production parameters were defined by producing rAAV2/GFP in HEK293 cells, yielding greater than 9000 infectious particles per cell with a 14:1 DNase resistance particle to infectious particle (DRP/ip) ratio. The optimized co-infection parameters were then used to generate large-scale stocks of rAAV1/AAT, which encode the human α-1-antitrypsin (hAAT) protein, and purified by column chromatography. The purified vector was extensively characterized by rAAV- and rHSV-specific assays and compared to transfection-made vector for in vivo efficacy in mice through intramuscular injection. The co-infection method was also used to produce rAAV9/AAT for comparison to rAAV1/AAT in vivo. Intramuscular administration of 1 × 1011 DRP per animal of rHSV-produced rAAV1/AAT and rAAV9/AAT resulted in hAAT protein expression of 5.4 × 104 and 9.4 × 105 ng ml−1 serum respectively, the latter being clinically relevant.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Hermonat PL, Muzyczka N . Use of adeno-associated virus as a mammalian DNA cloning vector: transduction of neomycin resistance into mammalian tissue culture cells. Proc Natl Acad Sci USA 1984; 81: 6466–6470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tratschin JD, West MH, Sandbank T, Carter BJ . A human parvovirus, adeno-associated virus, as a eukaryotic vector: transient expression and encapsidation of the prokaryotic gene for chloramphenicol acetyltransferase. Mol Cell Biol 1984; 4: 2072–2081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Muzyczka N, Berns KI . Parvoviridae: the viruses and their replication. In: Knipe DM, Howley PM (eds). Fields Virology, 4th edn. Lippincott, Williams and Wilkins: New York, NY, 2001, pp 2327–2360.

    Google Scholar 

  4. Kotin RM, Siniscalco M, Samulski RJ, Zhu XD, Hunter L, Laughlin CA et al. Site-specific integration by adeno-associated virus. Proc Natl Acad Sci USA 1990; 87: 2211–2215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kotin RM, Menninger JC, Ward DC, Berns KI . Mapping and direct visualization of a region-specific viral DNA integration site on chromosome 19q13-qter. Genomics 1991; 10: 831–834.

    Article  CAS  PubMed  Google Scholar 

  6. Samulski RJ, Zhu X, Xiao X, Brook JD, Housman DE, Epstein N et al. Targeted integration of adeno-associated virus (AAV) into human chromosome 19 [published erratum appears in EMBO J 1992; 11: 1228]. EMBO J 1991; 10: 3941–3950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kay MA, Manno CS, Ragni MV, Larson PJ, Couto LB, McClelland A et al. Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nat Genet 2000; 24: 257–261.

    Article  CAS  PubMed  Google Scholar 

  8. Jiang H, Pierce GF, Ozelo MC, de Paula EV, Vargas JA, Smith P et al. Evidence of multiyear factor IX expression by AAV-mediated gene transfer to skeletal muscle in an individual with severe hemophilia B. Mol Ther 2006; 14: 452–455.

    Article  CAS  PubMed  Google Scholar 

  9. Kaplitt MG, Feigin A, Tang C, Fitzsimons HL, Mattis P, Lawlor PA et al. Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson's disease: an open label, phase I trial. Lancet 2007; 369: 2097–2105.

    Article  CAS  PubMed  Google Scholar 

  10. Worgall S, Sondhi D, Hackett NR, Kosofsky B, Kekatpure MV, Neyzi N et al. Treatment of late infantile neuronal ceroid lipofuscinosis by CNS administration of a serotype 2 adeno-associated virus expressing CLN2 cDNA. Hum Gene Ther 2008; 19: 463–474.

    Article  CAS  PubMed  Google Scholar 

  11. Stedman H, Wilson JM, Finke R, Kleckner AL, Mendell J . Phase I clinical trial utilizing gene therapy for limb girdle muscular dystrophy: α-, β-, γ-, or Δ-sarcoglycan gene delivered with intramuscular instillations of adeno-associated vectors. Hum Gene Ther 2000; 11: 777–790.

    Article  CAS  PubMed  Google Scholar 

  12. Tebbutt SJ . Technology evaluation: AAV-CFTR vector, targeted genetics. Curr Opin Mol Ther 1999; 1: 524–529.

    CAS  PubMed  Google Scholar 

  13. http://www.clinicaltrials.gov/

  14. Brantly ML, Spencer LT, Humphries M, Conlon TJ, Spencer CT, Poirier A et al. Phase I trial of intramuscular injection of a recombinant adeno-associated virus serotype 2 alpha1-antitrypsin (AAT) vector in AAT-deficient adults. Hum Gene Ther 2006; 17: 1177–1186.

    Article  CAS  PubMed  Google Scholar 

  15. Muzyczka N . Use of adeno-associated virus as a general transduction vector for mammalian cells. Curr Top Microbiol Immunol 1992; 158: 97–129.

    CAS  PubMed  Google Scholar 

  16. Samulski RJ, Srivastava A, Berns KI, Muzyczka N . Rescue of adeno-associated virus from recombinant plasmids: gene correction within the terminal repeats of AAV. Cell 1983; 33: 135–143.

    Article  CAS  PubMed  Google Scholar 

  17. Berns KI . The Parvoviruses. Plenum Press: New York, 1984.

    Book  Google Scholar 

  18. Chejanovsky N, Carter BJ . Mutagenesis of an AUG codon in the adeno-associated virus rep gene: effects on viral DNA replication. Virology 1989; 173: 120–128.

    Article  CAS  PubMed  Google Scholar 

  19. Samulski RJ, Chang LS, Shenk T . A recombinant plasmid from which an infectious adeno-associated virus genome can be excised in vitro and its use to study viral replication. J Virol 1987; 61: 3096–3110.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Chejanovsky N, Carter BJ . Mutation of a consensus purine nucleotide binding site in the adeno-associated virus rep gene generates a dominant negative phenotype for DNA replication. J Virol 1990; 64: 1764–1770.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Huang MM, Hearing P . Adenovirus early region 4 encodes two gene products with redundant effects in lytic infection. J Virol 1989; 63: 2605–2615.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Samulski RJ, Shenk T . Adenovirus E1B 55-Mr polypeptide facilitates timely cytoplasmic accumulation of adeno-associated virus mRNAs. J Virol 1988; 62: 206–210.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Xiao X, Li J, Samulski RJ . Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 1998; 72: 2224–2232.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Clark KR . Recent advances in recombinant adeno-associated virus vector production. Kidney Int 2002; 61s: 9–15.

    Article  Google Scholar 

  25. Qiao C, Li J, Skold A, Zhang X, Xiao X . Feasibility of generating adeno-associated virus packaging cell lines containing inducible adenovirus helper genes. J Virol 2002; 76: 1904–1913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Clark KR, Voulgaropoulou F, Fraley DM, Johnson PR . Cell lines for the production of recombinant adeno-associated virus. Hum Gene Ther 1995; 6: 1329–1341.

    Article  CAS  PubMed  Google Scholar 

  27. Grimm D, Kern A, Rittner K, Kleinschmidt JA . Novel Tools for production and purification of recombinant adeno-associated virus vectors. Hum Gene Ther 1998; 9: 2745–2760.

    Article  CAS  PubMed  Google Scholar 

  28. Zolotukhin S, Potter M, Zolotukhin I, Sakai Y, Loiler S, Fraites Jr TJ et al. Production and purification of serotype 1, 2, and 5 recombinant adeno-associated viral vectors. Methods 2002; 28: 158–167.

    Article  CAS  PubMed  Google Scholar 

  29. Buller RML, Janik JE, Sebring ED, Rose JA . Herpes simplex virus types 1 and 2 completely help adenovirus-associated virus replication. J Virol 1981; 40: 241–247.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Weindler FW, Heilbronn R . A Subset of herpes simplex virus replication genes provides helper functions for productive adeno-associated virus replication. J Virol 1991; 65: 2476–2483.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Conway JE, ap Rhys CMJ, Zolotukhin I, Zolotukhin S, Muzyczka N, Hayward GS et al. High-titer recombinant adeno-associated virus production utilizing a recombinant herpes simplex virus type I vector expressing AAV2 Rep and Cap. Gene Therapy 1999; 6: 986–993.

    Article  CAS  PubMed  Google Scholar 

  32. Conway JE, Zolotukhin S, Muzyczka N, Hayward GS, Byrne BJ . Recombinant adeno-associated virus type 2 replication and packaging is entirely supported by a herpes simplex virus type 1 amplicon expressing rep and cap. J Virol 1997; 71: 8780–8789.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Mistry AR, De Alwis M, Feudner E, Ali RR, Thrasher AJ . High-titer stocks of adeno-associated virus from replicating amplicons and herpes vectors. Methods Mol Med 2002; 69: 445–460.

    CAS  PubMed  Google Scholar 

  34. Wustner JT, Arnold S, Lock M, Richardson JC, Himes VB, Kurtzman G et al. Production of recombinant adeno-associated type 5 (rAAV5) vectors using recombinant herpes simplex viruses containing rep and cap. Mol Ther 2002; 6: 510–518.

    Article  CAS  PubMed  Google Scholar 

  35. Feudner E, de Alwis M, Thrasher AJ, Ali RR, Fauser S . Optimization of recombinant adeno-associated virus production using an herpes simplex virus amplicon system. J Virol Methods 2001; 96: 97–105.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang X, de Alwis M, Hart SL, Fitzke FW, Inglis SC, Boursnell MEG et al. High-titer recombinant adeno-associated virus production from replicating amplicons and herpes vectors deleted for glycoprotein H. Hum Gene Ther 1999; 10: 2527–2537.

    Article  CAS  PubMed  Google Scholar 

  37. Booth MJ, Mistry A, Li X, Thrasher A, Coffin RS . Transfection-free and scalable recombinant AAV vector production using HSV/AAV hybrids. Gene Therapy 2004; 11: 829–837.

    Article  CAS  PubMed  Google Scholar 

  38. Toublanc E, Benraiss A, Bonnin D, Blouin V, Brument N, Cartier N et al. Identification of a replication-defective herpes simplex virus for recombinant adeno-associated virus type 2 (rAAV2) particle assembly using stable producer cell lines. J Gene Med 2004; 6: 555–564.

    Article  CAS  PubMed  Google Scholar 

  39. Sollerbrant K, Elmén J, Wahlestedt C, Acker J, Leblois-Prehaud H, Latta-Mahieu M et al. A novel method using baculovirus-mediated gene transfer for production of recombinant adeno-associated virus vectors. J Gen Virol 2001; 82: 2051–2060.

    Article  CAS  PubMed  Google Scholar 

  40. Urabe M, Ding C, Kotin RM . Insect cells as a factory to produce adeno-associated virus type 2 vectors. Hum Gene Ther 2002; 13: 1935–1943.

    Article  CAS  PubMed  Google Scholar 

  41. Meghrous J, Aucoin MG, Jacob D, Chahal PS, Arcand N, Kamen AA . Production of recombinant adeno-associated viral vectors using a baculovirus/insect cell suspension culture system: from shake flasks to a 20-L bioreactor. Biotechnol Prog 2005; 21: 154–160.

    Article  CAS  PubMed  Google Scholar 

  42. Kohlbrenner E, Aslanidi G, Nash K, Shklyaev S, Campbell-Thompson M, Byrne BJ et al. Successful production of pseudotyped rAAV vectors using a modified baculovirus expression system. Mol Ther 2005; 12: 1217–1225.

    Article  CAS  PubMed  Google Scholar 

  43. Allen JM, Debelak DJ, Reynolds TC, Miller AD . Identification and elimination of replication-competent adeno-associated virus (AAV) that can arise by nonhomologous recombination during AAV vector production. J Virol 1997; 71: 6816–6822.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ogasawara Y, Urabe M, Kogure K, Kume A, Colosi P, Kurtzman GJ et al. Efficient production of adeno-associated virus vectors using split-type helper plasmids. Jpn J Cancer Res 1999; 90: 476–483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rice SA, Knipe DM . Genetic evidence for two distinct transactivation functions of the herpes simplex virus α protein ICP27. J Virol 1990; 64: 1704–1715.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Knop DR, Harrell H . Bioreactor production of recombinant herpes simplex virus vectors. Biotechnol Prog 2007; 23: 715–721.

    Article  CAS  PubMed  Google Scholar 

  47. Li J, Samulski RJ, Xiao X . Role for highly regulated rep gene expression in adeno-associated virus vector production. J Virol 1997; 71: 5236–5243.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ogasawara Y, Urabe M, Ozawa K . The use of heterologous promoters for adeno-associated virus (AAV) protein expression in AAV vector production. Microbiol Immunol 1998; 42: 177–185.

    Article  CAS  PubMed  Google Scholar 

  49. Mendelson E, Trempe JP, Carter BJ . Identification of the trans-acting rep proteins of adeno-associated virus by antibodies to a synthetic oligopeptide. J Virol 1986; 60: 823–832.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Trempe JP, Mendelson E, Carter BJ . Characterization of adeno-associated virus rep proteins in human cells by antibodies raised against rep expressed in Escherichia coli. Virology 1987; 161: 18–28.

    Article  CAS  PubMed  Google Scholar 

  51. Buller RML, Straus SE, Rose JA . Mechanism of host restriction of adenovirus-associated virus replication in African green monkey kidney cells. J Gen Virol 1970; 43: 663–672.

    Article  Google Scholar 

  52. Collaco RF, Cao X, Trempe JP . A Helper virus-free packaging system for recombinant adeno-associated virus vectors. Gene 1999; 238: 397–405.

    Article  CAS  PubMed  Google Scholar 

  53. Ye G et al. A novel herpes simplex virus helper based production of adeno-associated virus vectors for treatment of retinal angiogenesis. Mol Ther 2006; 13 (Suppl 1s): 194 (Abstract 503).

    Article  Google Scholar 

  54. Aubert M, Blaho JA . The herpes simplex virus type 1 regulatory protein ICP27 is required for the prevention of apoptosis in infected human cells. J Virol 1999; 73: 2803–2813.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Sanfilippo CM, Chirimuuta FNW, Blaho JA . Herpes simplex virus type 1 immediate-early gene expression is required for the induction of apoptosis in human epithelial HEp-2 cells. J Virol 2004; 78: 224–239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sanfilippo CM, Blaho JA . ICP0 gene expression is a herpes simplex virus type 1 apoptotic trigger. J Virol 2006; 80: 6810–6821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. DeFilippis RA, Goodwin EC, Wu L, DiMaio D . Endogenous human papillomavirus E6 and E7 proteins differentially regulate proliferation, senescence, and apoptosis in HeLa cervical carcinoma cells. J Virol 2003; 77: 1551–1563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Conway JE . Herpes simplex virus type I based systems for the large-scale production of recombinant adeno-associated virus type-2 vectors. A dissertation. 2001, John Hopkins University.

  59. Clark KR, Voulgaropoulou F, Johnson PR . A stable cell line carrying adenovirus-inducible rep and cap genes allows for infectivity titration of adeno-associated virus vectors. Gene Therapy 1996; 3: 1124–1132.

    CAS  PubMed  Google Scholar 

  60. Zolotukhin S, Byrne BJ, Mason E, Zolotukhin I, Potter M, Chesnut K et al. Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gene Therapy 1999; 6: 973–985.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Barry Byrne (Department of Pediatrics), Irene Zolotukhin, Dr Nicholas Muzyczka, Dr Richard O Snyder and Dr Brian Cleaver (Molecular Genetics and Microbiology Department) of the University of Florida Powell Gene Therapy Center for technical discussions and helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D R Knop.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, W., Wang, L., Harrell, H. et al. An efficient rHSV-based complementation system for the production of multiple rAAV vector serotypes. Gene Ther 16, 229–239 (2009). https://doi.org/10.1038/gt.2008.158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2008.158

Keywords

This article is cited by

Search

Quick links