Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The role of common protective alleles HLA-DRB1*13 among systemic autoimmune diseases

Subjects

Abstract

Associations between human leukocyte antigen (HLA) and susceptibility to systemic autoimmune diseases have been reported. The predisposing alleles are variable among ethnic groups and/or diseases. On the other hand, some HLA alleles are associated with resistance to systemic autoimmune diseases, including systemic sclerosis, systemic lupus erythematosus and rheumatoid arthritis. Interestingly, DRB1*13 alleles are the protective alleles shared by multiple autoimmune diseases. DRB1*13:01 allele is protective in European populations and DRB1*13:02 in Japanese. Because alleles in multiple HLA loci are in strong linkage disequilibrium, it is difficult to determine which of the protective alleles is functionally responsible for the protective effects. Thus far, association studies suggested that DRB1*13:02 represents at least one of the causally associated protective factors against multiple systemic autoimmune diseases in the Japanese population. The protective effect of DRB1*13 alleles appears to overcome the predisposing effect of the susceptible alleles in heterozygous individuals of DRB1*13 and the susceptible allele. A gene dosage effect was observed in the associations of DRB1*13:02 with the protection from systemic autoimmune diseases; thus homozygous individuals are more effectively protected from the systemic autoimmune diseases than heterozygotes. DRB1*13:02 also confers protection against organ-specific autoimmune diseases and some infectious diseases. Several hypotheses can be proposed for the molecular mechanisms of the protection conferred by DRB1*13, some of which can explain the dominant effect of DRB1*13 molecules over the susceptible alleles, but the actual protective function of DRB1*13 requires further study. Understanding of the protective mechanisms of DRB1*13 may lead to the identification of targets for the curative treatment of systemic autoimmune diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Klemperer P, Pollack AD, Baehr G . Diffuse collagen disease. Acute disseminated lupus erythematosus and diffuse scleroderma. JAMA 1942; 119: 331–332.

    Article  Google Scholar 

  2. Assassi S, Radstake TR, Mayes MD, Martin J . Genetics of scleroderma: implications for personalized medicine? BMC Med 2013; 11: 9.

    Article  Google Scholar 

  3. Rahman A, Isenberg DA . Systemic lupus erythematosus. N Engl J Med 2008; 358: 929–939.

    Article  CAS  Google Scholar 

  4. Perricone C, Ceccarelli F, Valesini G . An overview on the genetic of rheumatoid arthritis: a never-ending story. Autoimmun Rev 2011; 10: 599–608.

    Article  CAS  Google Scholar 

  5. Horton R, Wilming L, Rand V, Lovering RC, Bruford EA, Khodiyar VK et al. Gene map of the extended human MHC. Nat Rev Genet 2004; 5: 889–899.

    Article  CAS  Google Scholar 

  6. Arnett FC, Gourh P, Shete S, Ahn CW, Honey RE, Agarwal SK et al. Major histocompatibility complex (MHC) class II alleles, haplotypes and epitopes which confer susceptibility or protection in systemic sclerosis: analyses in 1300 Caucasian, African-American and Hispanic cases and 1000 controls. Ann Rheum Dis 2010; 69: 822–827.

    Article  CAS  Google Scholar 

  7. Kuwana M, Okano Y, Kaburaki J, Inoko H . HLA class II genes associated with anticentromere antibody in Japanese patients with systemic sclerosis (scleroderma). Ann Rheum Dis 1995; 54: 983–987.

    Article  CAS  Google Scholar 

  8. Kuwana M, Inoko H, Kameda H, Nojima T, Sato S, Nakamura K et al. Association of human leukocyte antigen class II genes with autoantibody profiles, but not with disease susceptibility in Japanese patients with systemic sclerosis. Intern Med 1999; 38: 336–344.

    Article  CAS  Google Scholar 

  9. He D, Wang J, Yi L, Guo X, Guo S, Guo G et al. Association of the HLA-DRB1 with scleroderma in Chinese population. PLoS One 2014; 9: e106939.

    Article  Google Scholar 

  10. Wang J, Guo X, Yi L, Guo G, Tu W, Wu W et al. Association of HLA-DPB1 with scleroderma and its clinical features in Chinese population. PLoS One 2014; 9: e87363.

    Article  Google Scholar 

  11. Moroi Y, Peebles C, Fritzler MJ, Steigerwald J, Tan EM . Autoantibody to centromere (kinetochore) in scleroderma sera. Proc Natl Acad Sci USA 1980; 77: 1627–1631.

    Article  CAS  Google Scholar 

  12. Douvas AS, Achten M, Tan EM . Identification of a nuclear protein (Scl-70) as a unique target of human antinuclear antibodies in scleroderma. J Biol Chem 1979; 254: 10514–10522.

    CAS  Google Scholar 

  13. Furukawa H, Oka S, Kawasaki A, Shimada K, Sugii S, Matsushita T et al. Human leukocyte antigen and systemic sclerosis in Japanese: the sign of the four independent protective alleles, DRB1*13:02, DRB1*14:06, DQB1*03:01, and DPB1*02:01. PLoS One 2016; 11: e0154255.

    Article  Google Scholar 

  14. Black CM, Welsh KI, Fielder A, Hughes GR, Batchelor JR . HLA antigens and Bf allotypes in SLE: evidence for the association being with specific haplotypes. Tissue Antigens 1982; 19: 115–120.

    Article  CAS  Google Scholar 

  15. Tsuchiya N, Kawasaki A, Tsao BP, Komata T, Grossman JM, Tokunaga K . Analysis of the association of HLA-DRB1, TNFalpha promoter and TNFR2 (TNFRSF1B) polymorphisms with SLE using transmission disequilibrium test. Genes Immun 2001; 2: 317–322.

    Article  CAS  Google Scholar 

  16. Shimane K, Kochi Y, Suzuki A, Okada Y, Ishii T, Horita T et al. An association analysis of HLA-DRB1 with systemic lupus erythematosus and rheumatoid arthritis in a Japanese population: effects of *09:01 allele on disease phenotypes. Rheumatology (Oxford) 2013; 52: 1172–1182.

    Article  CAS  Google Scholar 

  17. Lu LY, Ding WZ, Fici D, Deulofeut R, Cheng HH, Cheu CC et al. Molecular analysis of major histocompatibility complex allelic associations with systemic lupus erythematosus in Taiwan. Arthritis Rheum 1997; 40: 1138–1145.

    Article  CAS  Google Scholar 

  18. Sirikong M, Tsuchiya N, Chandanayingyong D, Bejrachandra S, Suthipinittharm P, Luangtrakool K et al. Association of HLA-DRB1*1502-DQB1*0501 haplotype with susceptibility to systemic lupus erythematosus in Thais. Tissue Antigens 2002; 59: 113–117.

    Article  CAS  Google Scholar 

  19. Furukawa H, Kawasaki A, Oka S, Ito I, Shimada K, Sugii S et al. Human leukocyte antigens and systemic lupus erythematosus: a protective role for the HLA-DR6 alleles DRB1*13:02 and *14:03. PLoS One 2014; 9: e87792.

    Article  Google Scholar 

  20. Suggs MJ, Majithia V, Lewis RE, Cruse JM . HLA DRB1*1503 allelic haplotype predominance and associated immunodysregulation in systemic lupus erythematosus. Exp Mol Pathol 2011; 91: 548–562.

    Article  CAS  Google Scholar 

  21. Reveille JD, Moulds JM, Ahn C, Friedman AW, Baethge B, Roseman J et al. Systemic lupus erythematosus in three ethnic groups: I. The effects of HLA class II, C4, and CR1 alleles, socioeconomic factors, and ethnicity at disease onset. LUMINA Study Group. Lupus in minority populations, nature versus nurture. Arthritis Rheum 1998; 41: 1161–1172.

    Article  CAS  Google Scholar 

  22. Furukawa H, Oka S, Shimada K, Sugii S, Hashimoto A, Komiya A et al. Association of increased frequencies of HLA-DPB1*05:01 with the presence of anti-Ro/SS-A and anti-La/SS-B antibodies in Japanese rheumatoid arthritis and systemic lupus erythematosus patients. PLoS One 2013; 8: e53910.

    Article  CAS  Google Scholar 

  23. Kim K, Bang SY, Lee HS, Okada Y, Han B, Saw WY et al. The HLA-DRbeta1 amino acid positions 11-13-26 explain the majority of SLE-MHC associations. Nat Commun 2014; 5: 5902.

    Article  CAS  Google Scholar 

  24. Jardetzky TS, Brown JH, Gorga JC, Stern LJ, Urban RG, Chi YI et al. Three-dimensional structure of a human class II histocompatibility molecule complexed with superantigen. Nature 1994; 368: 711–718.

    Article  CAS  Google Scholar 

  25. Stastny P . Mixed lymphocyte cultures in rheumatoid arthritis. J Clin Invest 1976; 57: 1148–1157.

    Article  CAS  Google Scholar 

  26. Reveille JD . The genetic contribution to the pathogenesis of rheumatoid arthritis. Curr Opin Rheumatol 1998; 10: 187–200.

    Article  CAS  Google Scholar 

  27. Oka S, Furukawa H, Kawasaki A, Shimada K, Sugii S, Hashimoto A et al. Protective effect of the HLA-DRB1*13:02 allele in Japanese rheumatoid arthritis patients. PLoS One 2014; 9: e99453.

    Article  Google Scholar 

  28. van der Woude D, Houwing-Duistermaat JJ, Toes RE, Huizinga TW, Thomson W, Worthington J et al. Quantitative heritability of anti-citrullinated protein antibody-positive and anti-citrullinated protein antibody-negative rheumatoid arthritis. Arthritis Rheum 2009; 60: 916–923.

    Article  Google Scholar 

  29. Viatte S, Plant D, Raychaudhuri S . Genetics and epigenetics of rheumatoid arthritis. Nat Rev Rheumatol 2013; 9: 141–153.

    Article  CAS  Google Scholar 

  30. Holoshitz J . The rheumatoid arthritis HLA-DRB1 shared epitope. Curr Opin Rheumatol 2010; 22: 293–298.

    Article  CAS  Google Scholar 

  31. Raychaudhuri S, Sandor C, Stahl EA, Freudenberg J, Lee HS, Jia X et al. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat Genet 2012; 44: 291–296.

    Article  CAS  Google Scholar 

  32. Vasconcelos C, Carvalho C, Leal B, Pereira C, Bettencourt A, Costa PP et al. HLA in Portuguese systemic lupus erythematosus patients and their relation to clinical features. Ann N Y Acad Sci 2009; 1173: 575–580.

    Article  CAS  Google Scholar 

  33. Bettencourt A, Carvalho C, Leal B, Bras S, Lopes D, Martins da Silva A et al. The protective role of HLA-DRB1(*)13 in autoimmune diseases. J Immunol Res 2015; 2015: 948723.

    Article  Google Scholar 

  34. van der Horst-Bruinsma IE, Visser H, Hazes JM, Breedveld FC, Verduyn W, Schreuder GM et al. HLA-DQ-associated predisposition to and dominant HLA-DR-associated protection against rheumatoid arthritis. Hum Immunol 1999; 60: 152–158.

    Article  CAS  Google Scholar 

  35. de Vries N, Tijssen H, van Riel PL, van de Putte LB . Reshaping the shared epitope hypothesis: HLA-associated risk for rheumatoid arthritis is encoded by amino acid substitutions at positions 67-74 of the HLA-DRB1 molecule. Arthritis Rheum 2002; 46: 921–928.

    Article  CAS  Google Scholar 

  36. Mattey DL, Dawes PT, Gonzalez-Gay MA, Garcia-Porrua C, Thomson W, Hajeer AH et al. HLA-DRB1 alleles encoding an aspartic acid at position 70 protect against development of rheumatoid arthritis. J Rheumatol 2001; 28: 232–239.

    CAS  Google Scholar 

  37. Gourraud PA, Dieude P, Boyer JF, Nogueira L, Cambon-Thomsen A, Mazieres B et al. A new classification of HLA-DRB1 alleles differentiates predisposing and protective alleles for autoantibody production in rheumatoid arthritis. Arthritis Res Ther 2007; 9: R27.

    Article  Google Scholar 

  38. Mewar D, Marinou I, Coote AL, Moore DJ, Akil M, Smillie D et al. Association between radiographic severity of rheumatoid arthritis and shared epitope alleles: differing mechanisms of susceptibility and protection. Ann Rheum Dis 2008; 67: 980–983.

    Article  CAS  Google Scholar 

  39. Tuokko J, Nejentsev S, Luukkainen R, Toivanen A, Ilonen J . HLA haplotype analysis in Finnish patients with rheumatoid arthritis. Arthritis Rheum 2001; 44: 315–322.

    Article  CAS  Google Scholar 

  40. Lundstrom E, Kallberg H, Smolnikova M, Ding B, Ronnelid J, Alfredsson L et al. Opposing effects of HLA-DRB1*13 alleles on the risk of developing anti-citrullinated protein antibody-positive and anti-citrullinated protein antibody-negative rheumatoid arthritis. Arthritis Rheum 2009; 60: 924–930.

    Article  Google Scholar 

  41. van der Woude D, Lie BA, Lundstrom E, Balsa A, Feitsma AL, Houwing-Duistermaat JJ et al. Protection against anti-citrullinated protein antibody-positive rheumatoid arthritis is predominantly associated with HLA-DRB1*1301: a meta-analysis of HLA-DRB1 associations with anti-citrullinated protein antibody-positive and anti-citrullinated protein antibody-negative rheumatoid arthritis in four European populations. Arthritis Rheum 2010; 62: 1236–1245.

    Article  CAS  Google Scholar 

  42. van Heemst J, Hensvold AH, Jiang X, van Steenbergen H, Klareskog L, Huizinga TW et al. Protective effect of HLA-DRB1*13 alleles during specific phases in the development of ACPA-positive RA. Ann Rheum Dis 2016; 75: 1891–1898.

    Article  Google Scholar 

  43. Ucar F, Karkucak M, Alemdaroglu E, Capkin E, Yucel B, Sonmez M et al. HLA-DRB1 allele distribution and its relation to rheumatoid arthritis in eastern Black Sea Turkish population. Rheumatol Int 2012; 32: 1003–1007.

    Article  CAS  Google Scholar 

  44. Jun KR, Choi SE, Cha CH, Oh HB, Heo YS, Ahn HY et al. Meta-analysis of the association between HLA-DRB1 allele and rheumatoid arthritis susceptibility in Asian populations. J Korean Med Sci 2007; 22: 973–980.

    Article  CAS  Google Scholar 

  45. Terao C, Ohmura K, Ikari K, Kochi Y, Maruya E, Katayama M et al. ACPA-negative RA consists of two genetically distinct subsets based on RF positivity in Japanese. PLoS One 2012; 7: e40067.

    Article  CAS  Google Scholar 

  46. Kawashima M, Ohashi J, Nishida N, Tokunaga K . Evolutionary analysis of classical HLA class I and II genes suggests that recent positive selection acted on DPB1*04:01 in Japanese population. PLoS One 2012; 7: e46806.

    Article  CAS  Google Scholar 

  47. Hachiya Y, Kawasaki A, Oka S, Kondo Y, Ito S, Matsumoto I et al. Association of HLA-G 3' untranslated region polymorphisms with systemic lupus erythematosus in a Japanese population: a case-control association study. PLoS One 2016; 11: e0158065.

    Article  Google Scholar 

  48. Nakajima F, Nakamura J, Yokota T . Analysis of HLA haplotypes in Japanese, using high resolution allele typing. MHC 2001; 8: 1–32.

    Article  CAS  Google Scholar 

  49. Gencik M, Borgmann S, Zahn R, Albert E, Sitter T, Epplen JT et al. Immunogenetic risk factors for anti-neutrophil cytoplasmic antibody (ANCA)-associated systemic vasculitis. Clin Exp Immunol 1999; 117: 412–417.

    Article  CAS  Google Scholar 

  50. Stassen PM, Cohen-Tervaert JW, Lems SP, Hepkema BG, Kallenberg CG, Stegeman CA . HLA-DR4, DR13(6) and the ancestral haplotype A1B8DR3 are associated with ANCA-associated vasculitis and Wegener's granulomatosis. Rheumatology (Oxford) 2009; 48: 622–625.

    Article  CAS  Google Scholar 

  51. Kawasaki A, Hasebe N, Hidaka M, Hirano F, Sada KE, Kobayashi S et al. Protective role of HLA-DRB1*13:02 against microscopic polyangiitis and MPO-ANCA-positive vasculitides in a Japanese population: a case-control study. PLoS One 2016; 11: e0154393.

    Article  Google Scholar 

  52. Flam ST, Gunnarsson R, Garen T, Lie BA, Molberg O . The HLA profiles of mixed connective tissue disease differ distinctly from the profiles of clinically related connective tissue diseases. Rheumatology (Oxford) 2015; 54: 528–535.

    Article  CAS  Google Scholar 

  53. Furuya T, Hakoda M, Tsuchiya N, Kotake S, Ichikawa N, Nanke Y et al. Immunogenetic features in 120 Japanese patients with idiopathic inflammatory myopathy. J Rheumatol 2004; 31: 1768–1774.

    CAS  Google Scholar 

  54. Kim TG, Lee HJ, Youn JI, Kim TY, Han H . The association of psoriasis with human leukocyte antigens in Korean population and the influence of age of onset and sex. J Invest Dermatol 2000; 114: 309–313.

    Article  CAS  Google Scholar 

  55. Maeda Y, Migita K, Higuchi O, Mukaino A, Furukawa H, Komori A et al. Association between anti-ganglionic nicotinic acetylcholine receptor (gAChR) antibodies and HLA-DRB1 alleles in the Japanese population. PLoS One 2016; 11: e0146048.

    Article  Google Scholar 

  56. Umemura T, Joshita S, Ichijo T, Yoshizawa K, Katsuyama Y, Tanaka E et al. Human leukocyte antigen class II molecules confer both susceptibility and progression in Japanese patients with primary biliary cirrhosis. Hepatology 2012; 55: 506–511.

    Article  CAS  Google Scholar 

  57. Ueda S, Oryoji D, Yamamoto K, Noh JY, Okamura K, Noda M et al. Identification of independent susceptible and protective HLA alleles in Japanese autoimmune thyroid disease and their epistasis. J Clin Endocrinol Metab 2014; 99: E379–E383.

    Article  CAS  Google Scholar 

  58. Madeleine MM, Johnson LG, Smith AG, Hansen JA, Nisperos BB, Li S et al. Comprehensive analysis of HLA-A, HLA-B, HLA-C, HLA-DRB1, and HLA-DQB1 loci and squamous cell cervical cancer risk. Cancer Res 2008; 68: 3532–3539.

    Article  CAS  Google Scholar 

  59. Hill AV, Allsopp CE, Kwiatkowski D, Anstey NM, Twumasi P, Rowe PA et al. Common west African HLA antigens are associated with protection from severe malaria. Nature 1991; 352: 595–600.

    Article  CAS  Google Scholar 

  60. Nishida N, Ohashi J, Khor SS, Sugiyama M, Tsuchiura T, Sawai H et al. Understanding of HLA-conferred susceptibility to chronic hepatitis B infection requires HLA genotyping-based association analysis. Sci Rep 2016; 6: 24767.

    Article  CAS  Google Scholar 

  61. Malhotra U, Holte S, Dutta S, Berrey MM, Delpit E, Koelle DM et al. Role for HLA class II molecules in HIV-1 suppression and cellular immunity following antiretroviral treatment. J Clin Invest 2001; 107: 505–517.

    Article  CAS  Google Scholar 

  62. Diepolder HM, Jung MC, Keller E, Schraut W, Gerlach JT, Gruner N et al. A vigorous virus-specific CD4+ T cell response may contribute to the association of HLA-DR13 with viral clearance in hepatitis B. Clin Exp Immunol 1998; 113: 244–251.

    Article  CAS  Google Scholar 

  63. Ferre AL, Hunt PW, McConnell DH, Morris MM, Garcia JC, Pollard RB et al. HIV controllers with HLA-DRB1*13 and HLA-DQB1*06 alleles have strong, polyfunctional mucosal CD4+ T-cell responses. J Virol 2010; 84: 11020–11029.

    Article  CAS  Google Scholar 

  64. Beretta L, Rueda B, Marchini M, Santaniello A, Simeon CP, Fonollosa V et al. Analysis of Class II human leucocyte antigens in Italian and Spanish systemic sclerosis. Rheumatology (Oxford) 2012; 51: 52–59.

    Article  CAS  Google Scholar 

  65. Verreck FA, van de Poel A, Drijfhout JW, Amons R, Coligan JE, Konig F . Natural peptides isolated from Gly86/Val86-containing variants of HLA-DR1, -DR11, -DR13, and -DR52. Immunogenetics 1996; 43: 392–397.

    Article  CAS  Google Scholar 

  66. Tsai S, Santamaria P . MHC class II polymorphisms, autoreactive T-cells, and autoimmunity. Front Immunol 2013; 4: 321.

    Article  Google Scholar 

  67. van Heemst J, Jansen DT, Polydorides S, Moustakas AK, Bax M, Feitsma AL et al. Crossreactivity to vinculin and microbes provides a molecular basis for HLA-based protection against rheumatoid arthritis. Nat Commun 2015; 6: 6681.

    Article  CAS  Google Scholar 

  68. Feitsma AL, Worthington J, van der Helm-van Mil AH, Plant D, Thomson W, Ursum J et al. Protective effect of noninherited maternal HLA-DR antigens on rheumatoid arthritis development. Proc Natl Acad Sci USA 2007; 104: 19966–19970.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by Grants-in-Aid for Scientific Research (B, C) (26293123, 22591090, 15K09543, 16K15154) and for Young Scientists (B) (24791018) from the Japan Society for the Promotion of Science, Health and Labour Science Research Grants from the Ministry of Health, Labour, and Welfare of Japan, the Practical Research Project for Allergic Diseases and Immunology from Japan Agency for Medical Research and Development, Grants-in-Aid for Clinical Research from National Hospital Organization, Research Grants from Daiwa Securities Health Foundation, Research Grants from Japan Research Foundation for Clinical Pharmacology, Research Grants from The Nakatomi Foundation, Research Grants from Takeda Science Foundation, Research Grants from Mitsui Sumitomo Insurance Welfare Foundation, Research Grants from Kato Memorial Trust for Nambyo Research, Bristol-Myers K.K. RA Clinical Investigation Grant from Bristol-Myers Squibb Co. and research grants from the following pharmaceutical companies: Abbott Japan Co., Ltd., Astellas Pharma Inc., Chugai Pharmaceutical Co., Ltd., Eisai Co., Ltd., Mitsuibishi Tanabe Pharma Corporation, Merck Sharp and Dohme Inc., Pfizer Japan Inc., Takeda Pharmaceutical Company Limited, and Teijin Pharma Limited. The funders had no role in study design, data collection and analysis, decision to publish or preparing the manuscript.

Author contributions

Conceived and designed the experiments: HF, NT, and ST; performed the experiments: HF, SO, and AK; analyzed the data: HF, contributed reagents/materials/analysis tools: HF, KS, AH, and ST; wrote the manuscript: HF, NT, and ST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Furukawa.

Ethics declarations

Competing interests

HF has the following conflicts, and the following funders are supported wholly or in part by the indicated pharmaceutical companies. The Japan Research Foundation for Clinical Pharmacology is run by Daiichi Sankyo, the Takeda Science Foundation is supported by an endowment from Takeda Pharmaceutical Company and the Nakatomi Foundation was established by Hisamitsu Pharmaceutical Co., Inc. The Daiwa Securities Health Foundation was established by Daiwa Securities Group Inc. and Mitsui Sumitomo Insurance Welfare Foundation was established by Mitsui Sumitomo Insurance Co., Ltd. HF received honoraria from Ajinomoto Co., Inc., Daiichi Sankyo Co., Ltd., Dainippon Sumitomo Pharma Co., Ltd., Pfizer Japan Inc., Takeda Pharmaceutical Company, Luminex Japan Corporation Ltd. and Ayumi Pharmaceutical Corporation. ST was supported by research grants from the pharmaceutical companies: Abbott Japan Co., Ltd., Astellas Pharma Inc., Chugai Pharmaceutical Co., Ltd., Eisai Co., Ltd., Mitsubishi Tanabe Pharma Corporation, Merck Sharp and Dohme Inc., Pfizer Japan Inc., Takeda Pharmaceutical Company Limited, and Teijin Pharma Limited. ST received honoraria from Asahi Kasei Pharma Corporation, Astellas Pharma Inc., AbbVie GK., Chugai Pharmaceutical Co., Ltd., Ono Pharmaceutical Co., Ltd., Mitsubishi Tanabe Pharma Corporation and Pfizer Japan Inc. NT was supported by SENSHIN Medical Research Foundation, which is supported by an endowment from Mitsubishi Tanabe Pharma Corporation, and received honoraria from Eisai Co., Ltd., Daiichi Sankyo Co., Ltd. and Asahi Kasei Corporation. The other authors declare no financial or commercial conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furukawa, H., Oka, S., Tsuchiya, N. et al. The role of common protective alleles HLA-DRB1*13 among systemic autoimmune diseases. Genes Immun 18, 1–7 (2017). https://doi.org/10.1038/gene.2016.40

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2016.40

This article is cited by

Search

Quick links