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Gene–disease association with human IFNL locus
polymorphisms extends beyond hepatitis C virus infections
S Chinnaswamy1,2

Interferon (IFN) lambda (IFN-λ or type III IFN) gene polymorphisms were discovered in the year 2009 to have a strong association
with spontaneous and treatment-induced clearance of hepatitis C virus (HCV) infection in human hosts. This landmark discovery
also brought renewed interest in type III IFN biology. After more than half a decade since this discovery, we now have reports that
show that genetic association of IFNL gene polymorphisms in humans is not limited only to HCV infections but extends beyond, to
include varied diseases such as non-alcoholic fatty liver disease, allergy and several other viral diseases including that caused by the
human immunodeficiency virus. Notably, all these conditions have strong involvement of host innate immune responses. After the
discovery of a deletion polymorphism that leads to the expression of a functional IFN-λ4 as the prime ‘functional’ variant, the
relevance of other polymorphisms regulating the expression of IFN-λ3 is in doubt. Herein, I seek to critically address these issues
and review the current literature to provide a framework to help further understanding of IFN-λ biology.
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INTRODUCTION
In the year 2003, two different groups reported on the presence of
three novel genes closely placed to each other, on human
chromosome 19 that coded for interferons (IFNs) with potent
antiviral properties.1,2 These genes due to their relatedness to the
interleukin 10 (IL-10) family were initially christened IL-28A, IL-28B
and IL-29, and subsequently changed to IFNL2, IFNL3 and IFNL1.3

The genes encode IFNλ-2, IFNL-λ3 and IFNL-λ1, respectively;
together with the newly discovered IFNL-λ4 (or IFNL4) they
constitute the type III IFNs or the lambda IFNs (IFNL-λs). IFNL-λ1, 2
and 3 activate antiviral responses through the JAK–STAT (janus
kinase–signal transducer and activator of transcription) pathway
by utilizing a distinct receptor complex made of a heterodimer
formed between IFN-λR1 and IL-10R2.2,3 Subsequent studies
showed that unlike the receptors that bind to type I IFNs, the
IFN-λ receptors were expressed on selective cell types mainly of
epithelial origin, hepatocytes and some immune cells.3–6 The
discovery of IFN-λs was seminal in the sense that it showed the
presence of an alternate system to the well-known type I IFNs
(IFN-α and IFN-β) that the different nucleated cells in the body,
especially the ones on epithelial surfaces, can utilize to combat
viral infections. Later studies in mice have shown that type III IFNs
form a strong barrier at the host–environment interface, which
encompasses large regions of epithelial lining to the respiratory,
gastrointestinal and urogenital tracts of mammals.7–10

A major boost in the area of IFN-λ research came after another
discovery in the year 2009. Three independent groups conducted
genome-wide association studies (GWASs) involving treatment
response to chronic hepatitis C virus (HCV) infections, in three
different geographical regions of the world, and reported that
single-nucleotide polymorphisms (SNPs) in the IFNL locus
(Figure 1), had strong association with treatment-induced HCV

clearance irrespective of ethnicity and geographical location of
the hosts.11–13 The search for a ‘causative’ or a ‘functional’ SNP at
the IFNL locus that could give a biological explanation for the HCV-
GWAS results was taken up rigorously by several groups, but none
seem to have given a better explanation to the HCV-IFN-λ ‘puzzle’
than the group from the National Institutes of Health, USA, that
discovered the presence of another IFNL upstream to IFNL3,
named as IFNL4 (refs 14,15; Figure 1; in Figure 1b, the alleles for
the respective SNPs are shown as beneficial (B) or non-beneficial
(NB) with respect to the studies on HCV (reviewed in ref. 15; the
major allele for each of the SNPs depicted in Figure 1b has been
shown to be the beneficial one in HCV infections). Functional IFN-
λ4 is expressed only in a subset of individuals, due to a frameshift-
causing deletion polymorphism (IFNL4-ΔG; rs368234815) in the
first exon of IFNL4 (Figure 1).14 The presence of the alternate allele
(IFNL4-TT) renders IFNL4 a pseudogene and this allele is seen in
~ 50% of the European population and in most of the east Asian
population, but IFNL4 is a functional gene (IFNL4-ΔG allele) in
majority (~95%) of the African population,16 suggesting that
human evolution has played an active role in elimination of a
functional IFN-λ4 in the human species.17 In fact, the pseudogene
shows strong positive selection in human evolution, whereas the
functional gene is conserved in other mammalian species except
in mice and rats where the gene is completely absent.17

In this article, I review the literature on genetic association
studies that have shown the involvement of the HCV-GWAS SNPs
in non-HCV disorders that involve both viral diseases and some
non-infectious conditions. I also update the progress on transcrip-
tional studies of the IFNL4 gene and examine whether the
functional IFN-λ4-generating SNP is sufficient to explain the
molecular mechanism of causality in the diseases it is associated
with, and whether the other IFNL locus SNPs (mainly the ones
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regulating IFN-λ3 expression) may have any functional roles to
play in the observed phenotypes.

GENETIC ASSOCIATION OF IFNL LOCUS POLYMORPHISMS IS NOT
LIMITED TO HCV INFECTIONS: INNATE IMMUNITY IS THE KEY
IFNL-λs and innate immunity against viruses
Innate and adaptive immunity are the two indispensable arms of
the mammalian immune system. Although we had a clearer
understanding of the principles of functioning of the adaptive
immunity arm, a lack of advanced molecular techniques and
incomplete understanding of molecular mechanisms made us
remain unaware of the intricacies of functioning of the innate
immunity arm, for a long time.18 With the advent of superior
molecular biology techniques and the discovery of the pathogen-
associated molecular pattern (PAMP) or pattern recognition
receptors,19 we now have better understanding of how nucleated
cells can differentially recognize different classes of pathogens
and propagate signals to their surroundings, in the process raising
the immediate alarm in the host.19 Large strides were made in the
area of molecular recognition of viral PAMPs and signal
transduction that leads to raising of antiviral states within virus-
infected cells.10,20 The epithelial cells, being at the interface
between the host and the environment in the respiratory,
gastrointestinal and the urogenital tract, are not only prone to a
variety of viral infections but are strategically located to respond
and propagate alarm signals to the underlying immune cells
(Figure 2). However, the primary function of the epithelium is to
provide a physical barrier between the underlying lamina propria

and the lumen of the cavity or the exterior. Even though they can
sense and respond to PAMPs and damage-associated molecular
patterns,21 the epithelial cells are not professional immune cells
and due to their high level of differentiation, may lack the
plasticity required to send out amplified and prolonged signals to
the lamina propria. Therefore, a crucial link still remained missing
about how an adaptive immune response is shaped within
distantly located lymph nodes that have obligatory ‘immune-rich
environments’, by taking cues from signals generated by viral
infections at the epithelium (Figure 2).
The discovery of the new class of effector immune cells called

the innate lymphoid cells (ILCs) may seem to have provided the
answer to this puzzle (Figure 2). ILCs are derivatives of common
lymphoid precursors along with T and B cells.22 These cells are
stationed near the epithelial surfaces in larger numbers and
respond to signals from the surrounding cells by secreting
cytokines and chemokines in large quantities, thereby acting as
signal amplifiers in both health and disease.23 The ILCs are
considered the innate immunity counterparts to the various Th (T
helper) cell (CD4+ (cluster of differentiation)) subsets of the
adaptive immune system (Figure 2; ref. 24). For example, ILC2s
respond to IL-33 generated from influenza virus-infected epithelial
cells by secreting IL-5 and IL-13, both known inducers of Th2
immunity.25 The natural killer cells, now classified as ILC1 cells, are
considered the Tc (T cytotoxic) cell (CD8+) counterparts.24 Even
though most studies so far on ILCs have been on mice, ILCs have
also been characterized in a variety of human tissues26 and are
deregulated in many human diseases.27 With emerging roles of
type III IFNs at the epithelium,8,10,28 ILCs and IFN-λs now seem to
be the major players in innate immunity at barrier surfaces.10,29
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Figure 1. Gene structure at the IFNL locus. (a) The SNPs that will be discussed in the text are shown. Arrows indicate the direction of the open
reading frames of genes. UTR, untranslated region. (b) The linkage disequilibrium (LD; r2) values and minor allele frequency (MAF) are shown
for the SNPs depicted in a. The alleles for the respective SNPs are shown as beneficial (B) or non-beneficial (NB) with respect to the studies on
HCV (reviewed in ref. 15). The minor allele (Mi) is the non-beneficial allele (that leads to expression of a functional IFN-λ4 and also lowers
expression of IFN-λ3) and the major allele (Ma) is the beneficial allele (that does not produce a functional IFN-λ4 and is associated with higher
levels of expression of IFN-λ3) for all SNPs, again with respect to HCV studies.15 The information on LD values has been obtained from 1000
Genomes Project reference panel (http://www.1000genomes.org), October 2014 release; some LD (r2) values for YRI (marked with *) were
obtained from ref. 14. The MAF values were obtained from dbSNP (National Center for Biotechnology Information). In Asian population, MAFs
of rs12979860, rs8099917 and rs4803217 are from JPT population; and MAFs of rs368234815, rs8103142 and rs28416813 are from CHB-JPT
populations. YRI, Yoruba in Ibadan, Nigeria; CEU, residents with ancestry from northern and western Europe; CHB/JPT, Han Chinese in Beijing,
China/Japanese in Tokyo, Japan; —, MAF information not available for the TA repeat polymorphism rs59702201.
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How ILCs respond and interact with the epithelial cells during viral
infections and how they cross-talk with other immune cells at the
barrier surfaces in shaping and maintaining the optimal Th
responses, will form the next exciting wave in innate immunity
research.
Similarly, research on the production, regulation and functions

of IFN-λs in viral infections has also been exciting in the last
decade. Human IFN-λs are secreted (except IFN-λ4 that is poorly
secreted30) in response to the detection of viral RNA intermediates
from the cytoplasm of epithelial cells via the toll-like receptor
and retinoic acid inducible gene I-like receptor) pathways.4,7,31

IFN-λs are also known to be secreted by macrophages,
plasmacytoid dendritic cells, monocyte-derived dendritic cells and
hepatocytes.4,6,32–34 The IFN-λR1 receptor is expressed on limited
cell types including epithelial cells, hepatocytes, B cells and
monocytes.5,35 There is currently no information on whether the
newly discovered ILCs secrete any of the IFN-λs and whether they
express IFN-λR1. IFN-λs act in a paracrine and/or autocrine manner
to raise an antiviral state in the infected and to-be-infected cells by
reprogramming the target cell gene expression patterns.28,36 The
IFNL SNPs would have functional roles if they can affect the
diversification of innate and adaptive immune cell subsets.
Diversification of ILC subsets will lead to the polarization of
dendritic cells and macrophages and will eventually influence the
Th1/Th2 balance by favoring either a Th1 or a Th2 response
(Figure 3).37 Although there is no evidence for this belief, it is
known that the IFNL SNPs do affect the expression of IFN-λ3

(ref. 15) and that they give rise to a new IFN (IFN-λ4).14 IFN-λ1, 2
and 3 are known to deflect the Th1/Th2 balance to a Th1
predominant mode in vitro and also in vivo in humans and
mice38,39 (reviewed in ref. 37). No such studies are reported for
IFN-λ4. One hypothesis is that different levels of IFN-λ3 expression
dictated by the underlying genetic polymorphisms are responsible
for eliciting a Th1 or a Th2 response.37 The role played by IFN-λ4 in
this process is only speculative at this stage (Figure 3). How IFN-λs
interact with the newly discovered ILCs is also unknown. A recent
report showed that rotavirus infection in mice is controlled by
IL-22 produced by ILC3s for which the presence of an intact IFN-λ
signaling pathway is required.40 An even more important question
in humans will be on what role does the IFNL SNPs, and therefore
IFN-λ4, play in the diversification and functioning of ILCs.
IFN-λ4 apart from being antiviral to HCV14 is also known to

inhibit other flaviviruses such as dengue virus, yellow fever virus41

and human corona viruses.30 Some of the other IFN-λs are known
to be induced by several human pathogens including M.
tuberculosis,42 human papilloma virus,43 influenza virus44 and
human metapneumovirus (also induces IFN-λ4),45 and have clear
antiviral activities against some but not other viruses in mice
(reviewed in ref. 46). In a recent finding, murine IFN-λ3 but not
IFN-α/IFN-β was responsible for protecting mice against norovirus
persistence in mice colon, strikingly, even in the absence of T and
B lymphocytes.9 Similar results were seen in reovirus infections of
mice colon.8 In conclusion, IFN-λs are potent antiviral molecules
and their cross-talk with innate immune cells can potentially
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orchestrate innate immunity against several viruses and they may
be particularly important at the barrier surfaces. IFN-λs also
modulate adaptive immunity by affecting Th1/Th2 balance, tilting
it to a Th1-favoring response that is required for clearing viral
infections. The function of the newly discovered IFN-λ4 in these
immune processes remains to be determined.

Association of IFNL locus polymorphisms with human diseases
In cognizance of the potential that IFN-λs may hold in innate
immunity, researchers across the world have got intrigued with
the IFNL SNPs and have started to test them in candidate gene
case–control studies in both infectious and non-infectious
diseases. So far, association has been reported with non-
alcoholic fatty liver disease (NAFLD), allergy and infections with
several viruses.

Cytomegalovirus. Cytomegalovirus (CMV) is a herpes virus that
infects plasmacytoid dendritic cells and epithelial cells in humans
causing chronic infections and is especially a problem in
immunosuppresed individuals. Egli et al.47 tested the association
of the IFNL SNP rs8099917 with CMV replication in a small number
of solid organ transplant patients (n= 38) who were seronegative
for CMV (but received an organ transplant from a CMV-
seropositive donor) and who had stopped receiving antiviral
prophylaxis. They found that the minor allele at rs8099917 (G) was
associated with decreased CMV replication (P= 0.036) in a
dominant model of inheritance. Further, their in vitro studies
provided evidence for a beneficial effect of the minor allele
against CMV replication.47 A study in CMV-seropositive kidney
transplant patients48 also found that the minor allele (T) at
rs12979860 had a dominant beneficial effect against CMV

replication. Although in another study in allogenic stem cell
transplant recipients,49 the minor allele T at rs12979860 protected
recipients against CMV infection in a recessive model of
inheritance.
Two more studies have also reported on the association of IFNL

SNPs with CMV.50,51 The first report by Bibert et al.50 tested for the
occurrence of CMV retinitis among those human immunodefi-
ciency virus (HIV)-infected patients who were at risk of developing
CMV retinitis due to low CD4 counts and CMV seropositivity. They
found that carriers of two copies of the minor allele (ΔG/ΔG),
increased the risk of getting CMV retinitis (P= 0.007) in multi-
variate regression models. In the second report by Manuel et al.,51

solid organ transplant patients were tested for the association of
rs368234815 with cumulative incidence of CMV replication. The
results showed that the minor allele homozygotes (ΔG/ΔG), only in
the pre-emptive antiviral therapy group but not among those
receiving antiviral prophylaxis, had higher incidence of CMV
replication. These results are indeed very interesting and sound,
but the paradoxical findings of the five groups in terms of the
model of inheritance of IFNL SNPs raise some questions. Although
two groups showed that their results fit best with a recessive
model of inheritance of IFNL SNPs50,51 in affecting CMV replica-
tion/retinitis wherein minor homozygosity was non-beneficial, the
other three studies show an opposite trend where the minor allele
had a beneficial effect against CMV replication in both patients
and cell culture experiments, involving either dominant47,48 or
recessive models of inheritance.49 In stark contrast, a dominant
model of inheritance (of the non-beneficial IFNL SNP minor allele)
has consistently given the best explanation on the observed
phenotypes in association studies with both spontaneous
clearance and IFN-based treatment response in chronic HCV
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infections.11–13,15 This discrepancy within the CMV studies may be
partly due to statistical fluctuations owing to low sample sizes,47,50

and high heterogeneity among patient groups, end points and
antiviral regimens that are followed in the different studies. The
discrepancy needs be resolved by well-designed replication
studies to gain a proper understanding of the role of IFNL SNPs
in CMV replication and disease.

Human T-lymphotrophic virus. Human T-lymphotrophic virus
(HTLV)-1 is an ancient retrovirus causing chronic infections in
humans and is associated with adult T-cell leukemia/lymphoma. It
is also associated with inflammatory disorders such as HTLV-1-
associated myelopathy/tropical spastic papaparesis (HAM/TSP),
HTLV-associated arthropathy and several other related disorders
including rheumatoid arthritis. A Spanish study reported for the
first time that an IFNL SNP (rs12979860) was associated with HAM/
TSP in a small number of patients (n= 41) who had HTLV-1 proviral
DNA in their blood cells.52 They showed that the presence of the
minor allele made 12/41 patients to have a sixfold higher risk
(P= 0.03) of having symptoms of HAM/TSP compared with
asymptomatic carriers (n= 29) in a dominant model of inheritance.
However, proviral DNA load was a confounder in this association;
covariate analysis suggested that both the SNP and proviral DNA
load were linked in their association with HAM/TSP. The minor
allele-carrying genotypes (CT and TT) were indeed having higher
proviral DNA in their blood cells compared with the major
homozygotes (P= 0.01). The major drawback of this study seems
to be the low sample number; although the strength of the study
was that there was significant effect of the minor allele on proviral
DNA copy number, a functional association that could be directly
linked with the antiviral role of IFN-λ3. It is known that the IFNL
SNP minor alleles are associated with decreased expression of IFN-
λ3 (reviewed in ref. 15, although an opposite effect is evident in
chronic HCV infections, where the minor allele carriers have low
baseline virus levels11). In a later study from Brazil,53 both
rs8099917 and rs12979860 were tested in a cohort consisting of
229 HTLV-positive subjects (93 HAM/TSP patient and 136
asymptomatic carriers). The minor allele G of rs8099917 was
significantly associated with HAM/TSP in both univariate and
multivariate analysis with a recessive model of inheritance
(Po0.001). In this study, the proviral DNA load as a covariate
did not seem to interfere with the association of rs8099917 with
HAM/TSP unlike the previous Spanish study.52 With respect to
rs12979860, the minor allele T was associated with HAM/TSP only
as a heterozygote in univariate analysis (P= 0.01) and weakly in
multivariate analysis (P= 0.06).
However, a series of studies have also reported conflicting

results to the above two reports on the association of IFNL SNPs
with HTLV-1-associated diseases. First, Sanabani et al.54 show
clearly a lack of association of IFNL SNP rs12979860 with HAM/TSP
and/or adult T-cell leukemia/lymphoma. This Brazilian study had
more number of samples (n= 112) than the Spanish study of
Trevino et al. (n= 41).52 They also did not find any correlation of
proviral DNA load with rs12979860 genotypes. Another report
from Brazil with a sample size of 79 also reflected similar findings,
where they found no association of rs12979860 with HAM/TSP
and proviral DNA load.55 This study also compared 300 healthy
controls with 79 HTLV-1-positive subjects and found no associa-
tion with rs12979860 and HTLV-1 infection. Yet another recent
study from Brazil analyzed the genotypes at rs8099917,
rs12979860 and rs8103142 in 300 healthy controls and 96
HTLV-1-infected individuals, and found no association with
HTLV-associated arthropathy and any of the three SNPs when
tested individually.56 When they carried out haplotype analysis,
they found some association (P= 0.01) with HTLV-1 infection and
one of the seven haplotypes (CCT) involving the three SNPs
(rs8099917, rs12979860 and rs8103142); with HTLV-associated
arthropathy and another haplotype (TTG; P= 0.05). They also

found an association of the three SNPs individually with levels of
some cytokines (such as IFN-γ) and proviral DNA load (Po0.05).56

However, no multiple testing corrections seem to have been
carried out in their analysis, thus severely undermining the
results.56 Further, a Japanese study also failed to see any
association with adult T-cell leukemia/lymphoma and rs8099917
and also with HTLV-1 and HCV mono- or co-infections.57 Last,
a study from France on 95 HTLV-1-positive subjects of
Afro-Carribean lineage compared the distribution of genotypes
of rs12979860 and the IFN-λ4-generating SNP rs368234815, and
found no association with HAM/TSP.58 In summary, the results so
far are not entirely convincing on a true association of the IFNL
SNPs with HTLV infection-related diseases. Further, in the two
reports52,53 that did see an association, the models of inheritance
used to fit the phenotype data do not agree with each other,
raising doubts on the underlying functionality of the observed
genetic associations. Therefore, more functional characterization
of the observed association may be needed to rule out false
positivity.

Hepatitis B virus. If at all there is another human disease where
IFNL SNPs were expected to have associations as strong as that of
HCV infections, it was the case of hepatitis B virus (HBV). This
expectation is because both viruses are hepatotropic and cause
chronic infections; both diseases can be effectively treated using
IFN-α even though they differ in their PAMP ligands recognized by
innate immune receptors.59,60 Mixed results have been obtained
about the role of IFNL SNPs in both spontaneous clearance and
IFN-α-induced clearance of HBV and the literature until the year
2013–2014 has been reviewed elsewhere.61–63 More studies have
also been conducted since then (results from 10 of them are
summarized in Supplementary Table 1), but have largely failed to
resolve the conflict.
Two studies have also reported on a lack of association of IFNL

SNPs on spontaneous as well as IFN-induced clearance of hepatitis
D virus, a co-infecting satellite virus that requires HBV for
replication and assembly.64,65 Although consistent results were
obtained across numerous studies with HCV–IFNL SNP association
mainly because they had only virological end point phenotypes15

that correlated well with serological and biochemical parameters
of the infection, several drawbacks in case of HBV studies may be
responsible for the inconsistent results. Some of them are:
presence of different HBV genotypes as mixed infections, with
some genotypes (genotype D62) showing better association than
others; variation in treatment regimens (IFN alone or with
nucleotide analogs); end point phenotypes varying from serology
to viral load, to biochemical parameters without a common
quantitative parameter to assess the phenotype; prolonged
clinical course of the disease with fluctuating virological,
serological and biochemical markers; and prevalence rates of
disease differing in different ethnicities/populations, to name a
few. The reports that have shown an association of IFNL SNPs with
HBV spontaneous or treatment-induced clearance are largely in
agreement with the results from HCV studies in terms of the
model of inheritance (Supplementary Table 1). Although the
conflicting data so far on HBV-IFNL SNP association do lead to
doubts about its true positive nature, the data are also not fully
supportive of the notion that the association may be false positive.
In fact it has been argued that if properly assessed, the association
between HBV disease progression and IFNL SNPs could have
clinical value.62 But it appears that the effect of the IFNL SNPs on
HBV persistence and/or progression within the human host is
highly variable; it may involve more complex interactions with
other variables and genes than was observed in chronic HCV
infections.

Human immunodeficiency virus. Another important viral disease
that has been tested for the influence of IFNL SNPs is acquired
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immunodeficiency syndrome (AIDS) caused by HIV. Particularly, it
was of interest to see how the IFNL SNP beneficial alleles are
distributed in a unique group of HIV-infected individuals that can
suppress the virus from replicating to high levels (defined as elite
controllers/suppressors or natural viral suppressors) and defer the
progression to AIDS (called as long-term non-progressors) without
any antiretroviral therapy; and another unique group that remains
HIV-seronegative despite being at high risk for infection due to
intravenous drug use (highly exposed seronegative or exposed
seronegative)). More interestingly, the natural viral suppressor
patients have also been known to efficiently clear HCV in HCV-HIV
co-infections, compared with controls in both African Americans66

and Caucasians.67

A few reports have come up in this area, some showing no
correlation of HIV infection/disease progression to the IFNL SNPs,
whereas others see clear association.68–74 One of the earlier
reports tested the association of rs12979860 in 291 high-risk
seronegative and 1221 HIV-positive subjects comprising both
white and black subjects in the USA.68 No association was evident
for either HIV positivity or for disease progression within the
infected subjects. In another study reported by Rallon et al.,69 the
association of rs12979860 was tested in two different cohorts. The
first comprised of 30 long-term non-progressors and 38 typical
progressors to AIDS; the second included 29 exposed seronega-
tive and 29 HIV-positive partners. Thus, the study tested both HIV
progression and protection, although in a small number of
patients. No significant difference in distribution of genotypes
between cases and controls was evident in both cohorts, although
the beneficial CC genotype was more frequent in the exposed
seronegative patients compared with HIV-positive patients (62%
vs 45%), suggesting that there may be a protective role for the CC
genotype against HIV that was not detected in the study, likely
due to inadequate power. Another study from the USA tested
whether the beneficial CC genotype at rs12979860 was over-
represented in 25 African-American elite controllers/suppressors
compared with HIV-infected patients with high viral loads, and
found no statistically significant difference.70 Confirming this
report, Sajadi et al.71 also found that CC genotype (for rs12979860)
was not significantly over-represented in 48 natural viral
suppressors of African-American origin compared with HIV-
positive (n= 124) and -negative controls (n= 173).
Three reports published subsequently have seen association

with rs12979860 and rs368234815, and spontaneous control of
HIV and/or AIDS progression.72–74 Interestingly, all three studies
were carried out on whites/Caucasians, whereas the reports that
failed to see an association described above were mostly carried
out on African Americans (except that by Rallon et al69 that used
white subjects) or mixed group of blacks and whites.68 First,
Machmach et al.72 found an association of rs12979860 with
spontaneous HIV control when tested on 53 white natural viral
suppressors and 389 matched non-controllers at P= 0.02 after
correcting for occurrence of HLA-B57 (human leukocyte antigen)
protective alleles (which also have independent association with
HIV and HCV spontaneous clearance) and gender, in multivariate
analysis. Second, Machmach et al.73 confirmed and extended their
results in another report, where they found the association of
rs368234815 with AIDS progression. Last, a recent study carried
out on a well-characterized Spanish white cohort of HCV-
seropositive men exposed to HIV infection through shared
needles shows a clear association of IFN-λ4-generating
rs368234815 with HIV positivity.74 The study had 213 men who
were HIV seropositive and 188 were highly exposed seronegative.
They found that the protective TT/TT genotype was over-
represented in the highly exposed seronegative group (0.49 vs
0.41; P= 0.006). Further, this association had no interaction with
the HIV-protective CCR5 (C–C chemokine receptor type 5) deletion
(P= 0.7). Interestingly, all three studies that found an association
show data that the non-beneficial minor alleles are following a

recessive model of inheritance,72–74 suggesting a common
underlying functionality in the observed genetic association
between the three studies. This is however different from the
dominant model of inheritance seen in HCV studies,11–13,15

suggesting that the two viruses may have different interactions
with IFN-λ-driven immune responses. However, unlike in the case
of CMV studies discussed above,47–51 all three HIV studies72–74

show that the minor alleles are non-beneficial, similar to the
observations in chronic HCV infections.15 In summary, it is evident
that IFNL SNPs do associate with HIV replication and disease
progression, even though in an ethnicity-specific manner. It
appears that the beneficial alleles of IFNL SNPs have protective
roles in whites/Caucasians. In African Americans, more studies
with the functional IFN-λ4-generating SNP rs368234815 rather
than rs12979860 will reveal any true association. This is especially
true as the two SNPs are not in strong linkage disequilibrium (LD)
in this population (Figure 1b).

Herpes simplex virus. Herpes simplex virus resides inside the
human host latently in sensory neurons, but gets reactivated due
to the altered host immunity and replicates efficiently in epithelial
cells causing genital or oral lesions (the latter is referred to as ‘cold
sores’). An association of rs12979860 with the recurrence and
severity of herpes simplex virus-1-induced ‘cold sores’ was
reported from a study on a small number of individuals
(n= 57).75 A recent report carried out on a large number of
individuals (n= 2192 for genital herpes; n= 1511 for oral herpes)
clearly found no association of rs368234815 with recurrence of
genital or oral herpes episodes.76 Among other phenotypes, the
latter report ruled out an effect of the SNP on ‘frequency of
recurrence’ of oral herpes, it however did not rule out an effect of
the SNP on severity of infection.

Non-infectious diseases and miscellaneous conditions. IFNL SNPs
have also been tried as candidate gene SNPs in some non-
infectious inflammatory diseases. The association of IFNL SNPs
with NAFLD was earlier reported by Petta et al.77 This study with
160 subjects identified an independent association with the CC
genotype at rs12979860 and the severity of lobular inflammation
(CC genotype positively correlated with severity of inflammation)
in a cohort of patients with NAFLD (P= o0.001). The study was
conducted taking lead from previous reports of increased hepatic
necroinflammation in HCV patients with the CC genotype at
rs12979860.78 Another report showed no such association in 195
Caucasian biopsy-confirmed NAFLD patients.79 However, all the
patients in this cohort were obese (with body mass index 430),
whereas in the previous study only 40% were obese. After the
latter report, Petta et al.80 revisited their data and indeed found an
association with the IFNL SNP only with their non-obese patients
(n= 94; P= 0o0.001) but not with the obese patients (n= 66;
P= 0.13). These initial doubts seem to have been resolved with a
recent report by Eslam et al.81 who worked on a relatively large
number of NAFLD patients (n= 488) and confirmed the association
of the CC genotype at rs12979860 with increased severity of liver
inflammation and fibrosis (P= o0.0001). They also found a similar
strong association with hepatic inflammation and fibrosis in
separate cohorts of viral hepatitis C (n= 3129) and B (n= 555),
strongly suggesting that even though the major allele genotype
CC is beneficial against HCV and HBV, it is also responsible for
excess inflammation of the liver in viral and non-viral hepatitis. All
four studies77–81 report on dominant models of inheritance for
the minor alleles; but unlike in the context of chronic HCV
infections,11–13 the minor alleles in NAFLD are beneficial rather
than being non-beneficial, as they are responsible for less severe
hepatic inflammation.
Extending the potential role for IFNL SNPs in inflammatory

diseases, there is also a recent report that showed association of
rs12979860 and allergy in children aged o5 years.82 Although the
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study involved a small sample size (non-allergic, n= 35; allergic
cohort 1, n= 35; food allergy cohort 2, n= 30), a large effect size
(odds ratio = 4.56, P= 0.004, for cohort 1) was seen wherein the
non-beneficial T allele at rs12979860 was over-represented in the
allergy group in a dominant model of inheritance. Another
interesting finding in this study was that the effect of the IFNL SNP
was more pronounced in females than males. This report suggests
that the non-beneficial IFNL SNP minor allele-carrying genotypes
may predispose children to an allergic phenotype by skewing the
Th1/Th2 balance to a Th2 predominant one. This extrapolation is
also based on the findings from a recent study on mice model of
allergic asthma, which showed that IFN-λ2 was able to rescue mice
from allergy by suppressing Th2 cytokines.39 These conclusions
would also suggest a role for IFNL SNPs in immune response to
respiratory viral infections, which account for disease exacerba-
tions in conditions such as asthma.83 A study carried out on
infants with respiratory syncytial virus-induced bronchiolitis
shows no association of r12979860 and rs8099917 with viral load
or other clinical features.84 Interestingly, the non-beneficial TT
genotype of rs12979860 was associated with early age of
hospitalization in the infants (P= 0.005). More studies are awaited
on the association of IFNL SNPs with allergy and allergy-related
diseases. In the autoimmune disorder multiple sclerosis, rs8099917
and rs12979860 did not show any association with IFN-β
treatment.85

As evidence for a potential role of IFN-λs and IFNL SNPs in
adaptive immune responses, a study has linked IFNL SNPs with
development of effective vaccine response against human
influenza virus in immunosuppressed individuals.86 The study
shows that minor allele (G)-carrying individuals at rs8099917 show
better vaccine responses (odds ratio = 1.99; P= 0.038) in a
dominant model of inheritance, and that T cells from minor
allele-carrying individuals produce more IL-4 (a Th2 cytokine). This
study also showed that recombinant IFN-λ3 increased Th1
responses from human peripheral blood mononuclear cells while
inhibiting Th2 responses (Th2 cytokines are needed for effective
seroconversion).86

TRANSCRIPTION STUDIES ON THE IFNL4 GENE
Studies have accumulated evidence on the different transcription
factors (TFs) that bind and drive transcription from all four IFNL
genes. Roles for several virus-inducible TFs such as NF-κB (nuclear

factor kappa-light-chain-enhancer of activated B cells), IFN
regulatory factor-3 and IFN regulatory factor-7 have been
defined for IFNL1, 2 and 3 genes, and have been reviewed
elsewhere.28,87,88 We recently showed that apart from these three
TFs, specificity protein 1 ( a GC-rich DNA-binding TF) also has a
role in driving transcription from the IFNL4 promoter in A549
cells89 (Figure 4a). A CpG island of ~ 1.5 kb is located upstream of
the IFNL3 gene and overlapping the IFNL4 gene, and also includes
two of the most important IFNL SNPs rs12979860 and
rs368234815. Epigenetic regulation of the transcriptional activity
at the IFNL locus is likely to involve this CpG island and needs
further exploration.90,91

Even though IFNL4 messenger RNA (mRNA) was shown to be
highly expressed from stimulated primary hepatocytes in the
original report that described the discovery of IFNL4,14 subsequent
studies have not seen robust expression levels of IFNL4 gene in
human samples. For example, Amanzada and others found IFNL4
transcripts expressed at 4.3–5.6-fold lower levels than IFNL2/3
mRNA in liver biopsies of HCV-infected patients.92 In another
report, IFNL4 mRNA was detectable in only in 7/23 and 8/23
patient-derived peripheral blood mononuclear cells that were
stimulated or not with IFN-poly(I:C), respectively.93 All 23 patients
carried at least one copy of the functional IFN-λ4-generating allele,
ΔG. In the report by Liang and colleagues also, IFNL4 transcripts
were seen in only 33/70 liver biopsies from HCV-infected
patients.94 Furthermore, Lu et al.41 found that only 2% of the
transcripts generated from poly(I:C)-stimulated primary hepato-
cytes derived from two heterozygous (TT/ΔG at rs368234815)
individuals, represented functional IFN-λ4 transcripts that origi-
nated from the ΔG allele. Similarly, they also found no expression
of the full-length functional IFN-λ4 mRNA transcripts from poly(I:
C)-stimulated A549 cells. It is possible that the qPCR assays utilized
in these studies may be suffering from technical difficulties in
dealing with several different mRNA isoforms of IFNL4 gene.14 All
the four studies described above have used primer sets where at
least one of the primers binds to the exon/intron/exon–intron
junctions (Figure 4b). Using a primer set that uniquely binds to the
3′-untranslated region of IFNL4 mRNA, IFN-λ4 induction was seen
at levels similar to that of IFN-λ2/3, upon human metapneumo-
virus infection of A549 cells by Banos-Lara et al.45 We used the
same primer set and found similar high expression levels upon
poly(I:C)/HCV RNA transfection in A549 cells.89 Two other studies
have reported no such problems in amplifying IFNL4 transcripts
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from liver biopsies.95,96 Although Honda et al.96 used the allele-
specific Taqman assay described earlier,14 Konishi et al. do not
provide the primer sequence information that they used in their
Taqman assays.95 The inconsistency in the above reports in
detection of IFNL4 transcripts (either the full-length functional IFN-
λ4 isoform or the other isoforms) suggests that RNA-sequencing
may be the optimal approach to measure IFNL4 transcripts.
Furthermore, the pre-mRNA splicing mechanism that leads to the
expression of different IFN-λ4 isoforms14 under different stimula-
tion and cell-type conditions needs to be examined.

THE RELEVANCE OF OTHER ‘IFN-λ3 FUNCTIONAL SNPS’ AFTER
THE DISCOVERY OF FUNCTIONAL IFN-λ4-GENERATING SNP
Till date, three functional SNPs have been identified that regulate
IFNL3 gene transcription/translation (referred to as ‘IFN-λ3
functional SNPs’ in this section). Although rs28416813 is a SNP
present at ~ 37 nucleotides upstream of the start codon of IFNL3
and is known to affect downstream gene expression by
differentially binding to NF-κB,97 rs4803217 was identified in the
3′-untranslated region region of IFNL3 (Figure 1a) that affects
stability of the mRNA by interfering with AU-rich element decay
(AMD).98 Both these SNPs are in high LD with each other and with
rs12979860 and were predicted to be two of the four potential
causal SNPs from among the HCV-GWAS hits.15,99 A recent study
defines another mechanism by which rs4803217 affects the
stability of RNA by remodeling its secondary structure.100

Furthermore, a third functional SNP is the TA repeat polymorph-
ism rs59702201, originally reported by the Mizokami group.101

This SNP located within the proximal promoter affects transcrip-
tion of IFNL3, depending on the number of repeats present.101

Recent reports have confirmed the significance of this SNP in
association studies involving chronic HCV infections.102–104 Apart
from several reports that showed genotype-dependent differ-
ences in expression levels of IFN-λ3 (reviewed in ref. 15) recent
reports also have confirmed this finding in ex vivo and in vivo
conditions.94,105 These results suggest that IFN-λ3 expression
levels dictated by the alleles present at the three functional SNPs
may have a role in the observed phenotype in health and disease.
However, the discovery of the IFN-λ4-generating SNP

(rs368234815, referred to as ‘IFN-λ4 functional SNP’ in this section)
has overshadowed the importance of the ‘IFN-λ3 functional SNPs’,
as most of the new reports have chosen to test for the ‘IFN-λ4
functional SNP’ rather than rs12979860, which is the tag-SNP for
the ‘IFN-λ3 functional SNPs’.15 Another SNP within the coding
region of IFNL4 that leads to a non-synonymous mutation in the
functional IFN-λ4 protein is thought to be a better marker of
association along with rs368234815, in chronic HCV infections.106

So the question arises: is the IFN-λ4-generating SNP the sole
functional SNP or the other SNPs regulating the expression of IFN-
λ3 also have independent roles? The answer to this question will
be difficult to obtain under in vivo conditions due to high LD
between these SNPs in most populations that precludes any
attempts to assess their independent effects (Figure 1b). A recent
report compared the strength of association of rs4803217 and
rs368234815 in IFN treatment response in HCV-infected African
Americans, who have the lowest reported LD values among all
ethnicities between rs368234815 and rs12979860 SNPs
(Figure 1b).107 They found that rs368234815 was more strongly
associated with the outcome than rs4803217.107 In another
independent report, Lu et al. applied multivariate regression to
test the independence of rs368234815 from rs4803217 in
predicting response to IFN treatment in HCV patients of African-
American decent.100 They found that correcting for the effect of
s368234815 on rs4803217 abolished the latter SNP’s association
with treatment response, whereas correcting for the effect of the
latter SNP reduced the strength of association of the former SNP
(from P= 0.004 to 0.065).100 This could have resulted due to the

low sample size (n= 169); nevertheless, more results are awaited
to conclude that IFN-λ4-generating SNP is the sole functional SNP
and that the observations giving credence to the functionality of
the other ‘IFN-λ3 functional SNPs may only be artifacts.
Studies so far point to the functional IFN-λ4-generating SNP

rs368234815 as the prime causal variant at the human IFNL locus.
Therefore, a detailed investigation is needed on the function of
IFN-λ4 as both an antiviral cytokine in different viral diseases and
as a potential player in diversification and maintenance of innate
and adaptive immune cell subsets. In case of IFN treatment
response in chronic HCV infections, even though the IFN-λ4
-generating SNP can explain a large amount of variance in the
observed phenotypes,107 questions still remain on its role in
spontaneous clearance of HCV. It is known that expression of
functional IFN-λ4 is associated with high levels of IFN-stimulated
gene (ISG) expression in non-responders who further fail to
upregulate their ISG expression upon IFN-α treatment.15 However,
such an elegant explanation is lacking in the case of spontaneous
clearance of HCV (Figure 5). Although the majority of studies on
spontaneous HCV clearance are with rs12979860 and not
rs368234815, the fact that these two SNPs are in high LD in most
populations14 allows us to extrapolate the results. So, how does
the expression of a functional IFN-λ4 in patients who get an acute
HCV infection will lead them to become chronically infected? One
explanation could be that similar to the IFN treatment non-
responders group, the subjects expressing functional IFN-λ4 also
have higher baseline levels of ISGs, which do not get further
upregulated upon acute HCV infection. Having a higher basal
innate immune response may have helped those populations with
higher frequency of the functional IFN-λ4-generating allele in
dealing with prevalent viral infections. Higher baseline levels of
ISGs in people who can express a functional IFN-λ4 may be
offering protection against excess inflammation of the liver in
hepatitis of non-viral origin such as NAFLD.78–81 However, as is
evident from studies on spontaneous and treatment-induced
clearance of HCV, such a pre-emptive state may become non-
beneficial in dealing with hepatitis of viral origin. Further, there
may be other conditions that we do not yet know in which
expression of a functional IFN-λ4 may be beneficial. Therefore, an
epidemiological investigation to assess basal ISG expression levels,
in humans both in health and disease, and their correlation with
expression of IFN-λ4, is needed. Further, studies are also needed to
examine why hepatic IFN-λ3 levels are lower in the beneficial
allele/genotype-carrying individuals during chronic HCV infection
and how this phenomenon is reversed once treatment is initiated
(Figure 5c; ref. 94).
Although IFN-λ1, 2 and 3 are known to associate with a Th1

response,38,39,86 no information is available in this regard for IFN-
λ4. If the hypothesis that higher levels of IFN-λ3 expression (due to
presence of major alleles) will lead to a Th1 predominant response
is to be believed, then by extrapolation, IFN-λ4 should promote
Th2 responses (Figure 3; as ‘IFN-λ3 functional SNPs’ and ‘IFN-λ4
functional SNP’ are in strong LD and the minor allele will give rise
to IFN-λ4). This explanation is difficult to reconcile with the
observations that IFN-λ4, except for being a poorly secreted IFN,
requires the same dimeric receptor for signaling and can stimulate
not only similar set of ISGs but also at similar levels when
compared with IFN-λ3.14,30,36 Besides, both IFN-λ4 and IFN-λ3 have
similar antiviral potencies in vitro.14,41 Therefore, expression of IFN-
λ4 and its associated ISGs in a subset of individuals carrying minor
alleles is less likely to favor a completely opposite phenotype to
that seen in those carrying major alleles that induce higher levels
of IFN-λ3 expression.

CONCLUSIONS
Human IFNL SNPs came to the limelight after genetic studies
showed their relevance in chronic HCV infections in the year 2009.
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Since then, case–control studies in humans have been reported
involving IFNL SNPs and several other viral diseases, NAFLD,
allergy and even in vaccine responses. Although it appears that
the associations are well replicated (such as in NAFLD and AIDS)
and strong in some diseases (such as in pediatric allergy),
conflicting reports weaken the association in some (such as those
involving HTLV and HBV), whereas further studies are needed in
others (such as those involving CMV and herpes simplex virus) to
clear discrepancies. The IFNL-λs may have critical roles in shaping
innate and adaptive immunity in general and in viral infections in
particular. However, unlike their effect in HCV infections, the IFNL

SNPs may involve interactions with variables other than just
standard end point phenotypes in many of the reported diseases/
conditions. Therefore, future studies should aim at dissecting
these interactions to arrive at meaningful results. Well-designed
replication studies and functional studies to strengthen the
genetic association results are required to arrive at firm
conclusions. Importantly, IFN-λ4 has emerged as the key causal
link to the genetic associations, but many questions remain on its
functional role in the diversification and shaping of innate and
adaptive immune responses in viral infections and other
inflammatory conditions.
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