Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

State of the union between metabolism and the immune system in type 2 diabetes

Abstract

Lymphocytes and myeloid cells (monocyte/macrophages) have important roles in multiple types of diseases characterized by unresolved inflammation. The relatively recent appreciation of obesity, insulin resistance and type 2 diabetes (T2D) as chronic inflammatory diseases has stimulated interest in understanding the role of immune cells in metabolic imbalance. Myeloid cells regulate inflammation through cytokine production and the adipose tissue remodeling that accompanies hyper-nutrition, thus are critical players in metabolic homeostasis. More recently, multiple studies have indicated a role for T cells in obesity-associated inflammation and insulin resistance in model organisms, with parallel work indicating that pro-inflammatory changes in T cells also associate with human T2D. Furthermore, the expansion of T cells with similar antigen-binding sites in obesity and T2D indicates these diseases share characteristics previously attributed to inflammatory autoimmune disorders. Parallel pro-inflammatory changes in the B-cell compartment of T2D patients have also been identified. Taken together, these studies indicate that in addition to accepted pro-inflammatory roles of myeloid cells in T2D, pro-inflammatory skewing of both major lymphocyte subsets has an important role in T2D disease pathogenesis. Basic immunological principles suggest that alterations in lymphocyte function in obesity and T2D patients are an integral part of a feed-forward pro-inflammatory loop involving additional cell types. Importantly, the pro-inflammatory loop almost inevitably includes adipocytes, known to respond to pro-inflammatory, pro-diabetogenic cytokines originating from the myeloid and lymphoid compartments. We propose a model for inflammation in T2D that functionally links lymphocyte, myeloid and adipocyte contributions, and importantly proposes that tools for B-cell ablation or regulation of T-cell subset balance may have a place in the endocrinologist's limited arsenal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Strissel KJ, Stancheva Z, Miyoshi H, Perfield II JW, DeFuria J, Jick Z et al. Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes 2007; 56: 2910–2918.

    Article  CAS  PubMed  Google Scholar 

  2. Apovian CM, Bigornia S, Mott M, Meyers MR, Ulloor J, Gagua M et al. Adipose macrophage infiltration is associated with insulin resistance and vascular endothelial dysfunction in obese subjects. Arterioscler Thromb Vasc Biol 2008; 28: 1654–1659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Senn JJ . Toll-like receptor-2 is essential for the development of palmitate-induced insulin resistance in myotubes. J Biol Chem 2006; 281: 26865–26875.

    Article  CAS  PubMed  Google Scholar 

  4. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS . TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 2006; 116: 3015–3025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bowie A, O’Neill LA . The interleukin-1 receptor/Toll-like receptor superfamily: signal generators for pro-inflammatory interleukins and microbial products. J Leukoc Biol 2000; 67: 508–514.

    Article  CAS  PubMed  Google Scholar 

  6. Elgazar-Carmon V, Rudich A, Hadad N, Levy R . Neutrophils transiently infiltrate intra-abdominal fat early in the course of high-fat feeding. J Lipid Res 2008; 49: 1894–1903.

    Article  CAS  PubMed  Google Scholar 

  7. Duffaut C, Galitzky J, Lafontan M, Bouloumie A . Unexpected trafficking of immune cells within the adipose tissue during the onset of obesity. Biochem Biophys Res Commun 2009; 384: 482–485.

    Article  CAS  PubMed  Google Scholar 

  8. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante Jr AW . Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003; 112: 1796–1808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Weisberg SP, Hunter D, Huber R, Lemieux J, Slaymaker S, Vaddi K et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest 2006; 116: 115–124.

    Article  CAS  PubMed  Google Scholar 

  10. Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 2006; 116: 1494–1505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fantuzzi G . Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol 2005; 115: 911–919; quiz 920.

    Article  CAS  PubMed  Google Scholar 

  12. Yokota T, Oritani K, Takahashi I, Ishikawa J, Matsuyama A, Ouchi N et al. Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood 2000; 96: 1723–1732.

    Article  CAS  PubMed  Google Scholar 

  13. Ouchi N, Kihara S, Arita Y, Okamoto Y, Maeda K, Kuriyama H et al. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway. Circulation 2000; 102: 1296–1301.

    Article  CAS  PubMed  Google Scholar 

  14. Lord GM, Matarese G, Howard JK, Baker RJ, Bloom SR, Lechler RI . Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 1998; 394: 897–901.

    Article  CAS  PubMed  Google Scholar 

  15. Larsen CM, Faulenbach M, Vaag A, Volund A, Ehses JA, Seifert B et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med 2007; 356: 1517–1526.

    Article  CAS  PubMed  Google Scholar 

  16. Berchtold LA, Larsen CM, Vaag A, Faulenbach M, Workman CT, Kruhoffer M et al. IL-1 receptor antagonism and muscle gene expression in patients with type 2 diabetes. Eur Cytokine Netw 2009; 20: 81–87.

    Article  CAS  PubMed  Google Scholar 

  17. Larsen CM, Faulenbach M, Vaag A, Ehses JA, Donath MY, Mandrup-Poulsen T . Sustained effects of interleukin-1-receptor antagonist treatment in type 2 diabetes mellitus. Diabetes Care 2009; 32: 1663–1668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yazdani-Biuki B, Stelzl H, Brezinschek HP, Hermann J, Mueller T, Krippl P et al. Improvement of insulin sensitivity in insulin resistant subjects during prolonged treatment with the anti-TNF-alpha antibody infliximab. Eur J Clin Invest 2004; 34: 641–642.

    Article  CAS  PubMed  Google Scholar 

  19. Ofei F, Hurel S, Newkirk J, Sopwith M, Taylor R . Effects of an engineered human anti-TNF-alpha antibody (CDP571) on insulin sensitivity and glycemic control in patients with NIDDM. Diabetes 1996; 45: 881–885.

    Article  PubMed  Google Scholar 

  20. Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS . Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature 1997; 389: 610–614.

    Article  CAS  PubMed  Google Scholar 

  21. Sauter NS, Schulthess FT, Galasso R, Castellani LW, Maedler K . The antiinflammatory cytokine interleukin-1 receptor antagonist protects from high-fat diet-induced hyperglycemia. Endocrinology 2008; 149: 2208–2218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Osborn O, Brownell SE, Sanchez-Alavez M, Salomon D, Gram H, Bartfai T . Treatment with an interleukin 1 beta antibody improves glycemic control in diet-induced obesity. Cytokine 2008; 44: 141–148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jura J, Wegrzyn P, Korostynski M, Guzik K, Oczko-Wojciechowska M, Jarzab M et al. Identification of interleukin-1 and interleukin-6-responsive genes in human monocyte-derived macrophages using microarrays. Biochim Biophys Acta 2008; 1779: 383–389.

    Article  CAS  PubMed  Google Scholar 

  24. Wallenius V, Wallenius K, Ahren B, Rudling M, Carlsten H, Dickson SL et al. Interleukin-6-deficient mice develop mature-onset obesity. Nat Med 2002; 8: 75–79.

    Article  CAS  PubMed  Google Scholar 

  25. Ehses JA, Lacraz G, Giroix MH, Schmidlin F, Coulaud J, Kassis N et al. IL-1 antagonism reduces hyperglycemia and tissue inflammation in the type 2 diabetic GK rat. Proc Natl Acad Sci USA 2009; 106: 13998–4003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med 2005; 11: 183–190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hotamisligil GS, Shargill NS, Spiegelman BM . Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 1993; 259: 87–91.

    Article  CAS  PubMed  Google Scholar 

  28. Laharrague P, Fontanilles AM, Tkaczuk J, Corberand JX, Penicaud L, Casteilla L . Inflammatory/haematopoietic cytokine production by human bone marrow adipocytes. Eur Cytokine Netw 2000; 11: 634–639.

    CAS  PubMed  Google Scholar 

  29. Solinas G, Vilcu C, Neels JG, Bandyopadhyay GK, Luo JL, Naugler W et al. JNK1 in hematopoietically derived cells contributes to diet-induced inflammation and insulin resistance without affecting obesity. Cell Metab 2007; 6: 386–397.

    Article  CAS  PubMed  Google Scholar 

  30. Arkan MC, Hevener AL, Greten FR, Maeda S, Li ZW, Long JM et al. IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med 2005; 11: 191–198.

    Article  CAS  PubMed  Google Scholar 

  31. Giulietti A, Stoffels K, Decallonne B, Overbergh L, Mathieu C . Monocytic expression behavior of cytokines in diabetic patients upon inflammatory stimulation. Ann N Y Acad Sci 2004; 1037: 74–78.

    Article  CAS  PubMed  Google Scholar 

  32. Dasu MR, Devaraj S, Park S, Jialal I . Increased toll-like receptor activation and TLR ligands in recently diagnosed type 2 diabetes subjects. Diabetes Care 2010; 33: 861–868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Creely SJ, McTernan PG, Kusminski CM, Fisher M, Da Silva NF, Khanolkar M et al. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab 2007; 292: E740–E747.

    Article  CAS  PubMed  Google Scholar 

  34. Randle PJ, Garland PB, Hales CN, Newsholme EA . The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963; 1: 785–789.

    Article  CAS  PubMed  Google Scholar 

  35. Fraze E, Donner CC, Swislocki AL, Chiou YA, Chen YD, Reaven GM . Ambient plasma free fatty acid concentrations in noninsulin-dependent diabetes mellitus: evidence for insulin resistance. J Clin Endocrinol Metab 1985; 61: 807–811.

    Article  CAS  PubMed  Google Scholar 

  36. Reaven GM, Hollenbeck C, Jeng CY, Wu MS, Chen YD . Measurement of plasma glucose, free fatty acid, lactate, and insulin for 24 h in patients with NIDDM. Diabetes 1988; 37: 1020–1024.

    Article  CAS  PubMed  Google Scholar 

  37. Salvi GE, Beck JD, Offenbacher S . PGE2, IL-1 beta, and TNF-alpha responses in diabetics as modifiers of periodontal disease expression. Ann Periodontol 1998; 3: 40–50.

    Article  CAS  PubMed  Google Scholar 

  38. Wen Y, Gu J, Li SL, Reddy MA, Natarajan R, Nadler JL . Elevated glucose and diabetes promote interleukin-12 cytokine gene expression in mouse macrophages. Endocrinology 2006; 147: 2518–2525.

    Article  CAS  PubMed  Google Scholar 

  39. Stephens JW, Hurel SJ, Lowe GD, Rumley A, Humphries SE . Association between plasma IL-6, the IL6 -174G>C gene variant and the metabolic syndrome in type 2 diabetes mellitus. Mol Genet Metab 2006; 90: 422–428.

    Article  PubMed  CAS  Google Scholar 

  40. Foss-Freitas MC, Foss NT, Donadi EA, Foss MC . In vitro TNF-alpha and IL-6 production by adherent peripheral blood mononuclear cells obtained from type 1 and type 2 diabetic patients evaluated according to the metabolic control. Ann N Y Acad Sci 2006; 1079: 177–180.

    Article  CAS  PubMed  Google Scholar 

  41. Virca GD, Kim SY, Glaser KB, Ulevitch RJ . Lipopolysaccharide induces hyporesponsiveness to its own action in RAW 264.7 cells. J Biol Chem 1989; 264: 21951–21956.

    Article  CAS  PubMed  Google Scholar 

  42. Yoza B, LaRue K, McCall C . Molecular mechanisms responsible for endotoxin tolerance. Prog Clin Biol Res 1998; 397: 209–215.

    CAS  PubMed  Google Scholar 

  43. Poggi M, Bastelica D, Gual P, Iglesias MA, Gremeaux T, Knauf C et al. C3H/HeJ mice carrying a toll-like receptor 4 mutation are protected against the development of insulin resistance in white adipose tissue in response to a high-fat diet. Diabetologia 2007; 50: 1267–1276.

    Article  CAS  PubMed  Google Scholar 

  44. Tsukumo DM, Carvalho-Filho MA, Carvalheira JB, Prada PO, Hirabara SM, Schenka AA et al. Loss-of-function mutation in Toll-like receptor 4 prevents diet-induced obesity and insulin resistance. Diabetes 2007; 56: 1986–1998.

    Article  CAS  PubMed  Google Scholar 

  45. Poggi M, Bastelica D, Gual P, Iglesias MA, Gremeaux T, Knauf C et al. C3H/HeJ mice carrying a toll-like receptor 4 mutation are protected against the development of insulin resistance in white adipose tissue in response to a high-fat diet. Diabetologia 2007; 50: 1267–1276.

    Article  CAS  PubMed  Google Scholar 

  46. Kim F, Pham M, Luttrell I, Bannerman DD, Tupper J, Thaler J et al. Toll-like receptor-4 mediates vascular inflammation and insulin resistance in diet-induced obesity. Circ Res 2007; 100: 1589–1596.

    Article  CAS  PubMed  Google Scholar 

  47. Hosoi T, Yokoyama S, Matsuo S, Akira S, Ozawa K . Myeloid differentiation factor 88 (MyD88)-deficiency increases risk of diabetes in mice. PLoS One 2010; 5: e12537.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Coenen KR, Gruen ML, Lee-Young RS, Puglisi MJ, Wasserman DH, Hasty AH . Impact of macrophage toll-like receptor 4 deficiency on macrophage infiltration into adipose tissue and the artery wall in mice. Diabetologia 2009; 52: 318–328.

    Article  CAS  PubMed  Google Scholar 

  49. Strissel KJ, Defuria J, Shaul ME, Bennett G, Greenberg AS, Obin MS . T-cell recruitment and Th1 polarization in adipose tissue during diet-induced obesity in C57BL/6 mice. Obesity (Silver Spring) 2010; 18: 1918–1925.

    Article  CAS  Google Scholar 

  50. Wu H, Ghosh S, Perrard XD, Feng L, Garcia GE, Perrard JL et al. T-cell accumulation and regulated on activation, normal T cell expressed and secreted upregulation in adipose tissue in obesity. Circulation 2007; 115: 1029–1038.

    Article  CAS  PubMed  Google Scholar 

  51. Rausch ME, Weisberg S, Vardhana P, Tortoriello DV . Obesity in C57BL/6J mice is characterized by adipose tissue hypoxia and cytotoxic T-cell infiltration. Int J Obes (Lond) 2008; 32: 451–463.

    Article  CAS  Google Scholar 

  52. Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med 2009; 15: 914–920.

    Article  CAS  PubMed  Google Scholar 

  53. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 2003; 112: 1821–1830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Suganami T, Nishida J, Ogawa Y . A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor alpha. Arterioscler Thromb Vasc Biol 2005; 25: 2062–2068.

    Article  CAS  PubMed  Google Scholar 

  55. Giulietti A, van Etten E, Overbergh L, Stoffels K, Bouillon R, Mathieu C . Monocytes from type 2 diabetic patients have a pro-inflammatory profile. 1,25-Dihydroxyvitamin D(3) works as anti-inflammatory. Diabetes Res Clin Pract 2007; 77: 47–57.

    Article  CAS  PubMed  Google Scholar 

  56. Mosser DM . The many faces of macrophage activation. J Leukoc Biol 2003; 73: 209–212.

    Article  CAS  PubMed  Google Scholar 

  57. Shaul ME, Bennett G, Strissel KJ, Greenberg AS, Obin MS . Dynamic, M2-like remodeling phenotypes of CD11c+ adipose tissue macrophages during high-fat diet--induced obesity in mice. Diabetes 2010; 59: 1171–1181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Park S, Rich J, Hanses F, Lee JC . Defects in innate immunity predispose C57BL/6J-Leprdb/Leprdb mice to infection by Staphylococcus aureus. Infect Immun 2009; 77: 1008–1014.

    Article  CAS  PubMed  Google Scholar 

  59. Stegenga ME, van der Crabben SN, Blumer RM, Levi M, Meijers JC, Serlie MJ et al. Hyperglycemia enhances coagulation and reduces neutrophil degranulation, whereas hyperinsulinemia inhibits fibrinolysis during human endotoxemia. Blood 2008; 112: 82–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ayilavarapu S, Kantarci A, Fredman G, Turkoglu O, Omori K, Liu H et al. Diabetes-induced oxidative stress is mediated by Ca2+-independent phospholipase A2 in neutrophils. J Immunol 2010; 184: 1507–1515.

    Article  CAS  PubMed  Google Scholar 

  61. Stegenga ME, van der Crabben SN, Dessing MC, Pater JM, van den Pangaart PS, de Vos AF et al. Effect of acute hyperglycaemia and/or hyperinsulinaemia on proinflammatory gene expression, cytokine production and neutrophil function in humans. Diabet Med 2008; 25: 157–164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hand WL, Hand DL, Vasquez Y . Increased polymorphonuclear leukocyte respiratory burst function in type 2 diabetes. Diabetes Res Clin Pract 2007; 76: 44–50.

    Article  CAS  PubMed  Google Scholar 

  63. Gupta A, Tripathi AK, Tripathi RL, Madhu SV, Banerjee BD . Advanced glycosylated end products-mediated activation of polymorphonuclear neutrophils in diabetes mellitus and associated oxidative stress. Indian J Biochem Biophys 2007; 44: 373–378.

    CAS  PubMed  Google Scholar 

  64. Omori K, Ohira T, Uchida Y, Ayilavarapu S, Batista Jr EL, Yagi M et al. Priming of neutrophil oxidative burst in diabetes requires preassembly of the NADPH oxidase. J Leukoc Biol 2008; 84: 292–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Karima M, Kantarci A, Ohira T, Hasturk H, Jones VL, Nam BH et al. Enhanced superoxide release and elevated protein kinase C activity in neutrophils from diabetic patients: association with periodontitis. J Leukoc Biol 2005; 78: 862–870.

    Article  CAS  PubMed  Google Scholar 

  66. Al-Attas OS, Al-Daghri NM, Al-Rubeaan KA, da Silva NF, Sabico SL, Kumar S et al. Changes in endotoxin levels in T2DM subjects on anti-diabetic therapies. Cardiovasc Diabetol 2009; 8: 20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Jagannathan M, McDonnell M, Liang Y, Hasturk H, Hetzel J, Rubin D et al. Toll-like receptors regulate B cell cytokine production in patients with diabetes. Diabetologia 2010; 53: 1461–1471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sutton C, Brereton C, Keogh B, Mills KH, Lavelle EC . A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J Exp Med 2006; 203: 1685–1691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Furuzawa-Carballeda J, Vargas-Rojas MI, Cabral AR . Autoimmune inflammation from the Th17 perspective. Autoimmun Rev 2007; 6: 169–175.

    Article  CAS  PubMed  Google Scholar 

  70. Hsu HC, Yang P, Wang J, Wu Q, Myers R, Chen J et al. Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nat Immunol 2008; 9: 166–175.

    Article  CAS  PubMed  Google Scholar 

  71. Galicia G, Kasran A, Uyttenhove C, De Swert K, Van Snick J, Ceuppens JL . ICOS deficiency results in exacerbated IL-17 mediated experimental autoimmune encephalomyelitis. J Clin Immunol 2009; 29: 426–433.

    Article  CAS  PubMed  Google Scholar 

  72. Komiyama Y, Nakae S, Matsuki T, Nambu A, Ishigame H, Kakuta S et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol 2006; 177: 566–573.

    Article  CAS  PubMed  Google Scholar 

  73. Pene J, Chevalier S, Preisser L, Venereau E, Guilleux MH, Ghannam S et al. Chronically inflamed human tissues are infiltrated by highly differentiated Th17 lymphocytes. J Immunol 2008; 180: 7423–7430.

    Article  CAS  PubMed  Google Scholar 

  74. Jagannathan-Bogdan M, McDonnell ME, Shin H, Rehman Q, Hasturk H, Apovian CM et al. Elevated proinflammatory cytokine production by a skewed T cell compartment requires monocytes and promotes inflammation in type 2 diabetes. J Immunol 2011; 186: 1162–1172.

    Article  CAS  PubMed  Google Scholar 

  75. Zuniga LA, Shen WJ, Joyce-Shaikh B, Pyatnova EA, Richards AG, Thom C et al. IL-17 regulates adipogenesis, glucose homeostasis, and obesity. J Immunol 2010; 185: 6947–6959.

    Article  CAS  PubMed  Google Scholar 

  76. Moseley TA, Haudenschild DR, Rose L, Reddi AH . Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev 2003; 14: 155–174.

    Article  CAS  PubMed  Google Scholar 

  77. Schwandner R, Yamaguchi K, Cao Z . Requirement of tumor necrosis factor receptor-associated factor (TRAF)6 in interleukin 17 signal transduction. J Exp Med 2000; 191: 1233–1240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Onishi RM, Gaffen SL . Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease. Immunology 2010; 129: 311–321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kolls JK, Linden A . Interleukin-17 family members and inflammation. Immunity 2004; 21: 467–476.

    Article  CAS  PubMed  Google Scholar 

  80. Mosser DM, Edwards JP . Exploring the full spectrum of macrophage activation. Nat Rev Immunol 2008; 8: 958–969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Winer S, Chan Y, Paltser G, Truong D, Tsui H, Bahrami J et al. Normalization of obesity-associated insulin resistance through immunotherapy. Nat Med 2009; 15: 921–929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yang H, Youm YH, Vandanmagsar B, Ravussin A, Gimble JM, Greenway F et al. Obesity increases the production of proinflammatory mediators from adipose tissue T cells and compromises TCR repertoire diversity: implications for systemic inflammation and insulin resistance. J Immunol 2010; 185: 1836–1845.

    Article  CAS  PubMed  Google Scholar 

  83. Winer S, Paltser G, Chan Y, Tsui H, Engleman E, Winer D et al. Obesity predisposes to Th17 bias. Eur J Immunol 2009; 39: 2629–2635.

    Article  CAS  PubMed  Google Scholar 

  84. Fossiez F, Djossou O, Chomarat P, Flores-Romo L, Ait-Yahia S, Maat C et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med 1996; 183: 2593–2603.

    Article  CAS  PubMed  Google Scholar 

  85. Liang M, Zhang Y, McDevit M, Marecki S, Nikolajczyk B . The IL-1 beta gene is transcribed from a poised promoter architecture in monocytes. J Biol Chem 2006; 281: 9227–9237.

    Article  CAS  PubMed  Google Scholar 

  86. Kubaszek A, Pihlajamaki J, Komarovski V, Lindi V, Lindstrom J, Eriksson J et al. Promoter polymorphisms of the TNF-alpha (G-308A) and IL-6 (C-174G) genes predict the conversion from impaired glucose tolerance to type 2 diabetes: the Finnish Diabetes Prevention Study. Diabetes 2003; 52: 1872–1876.

    Article  CAS  PubMed  Google Scholar 

  87. Feuerer M, Herrero L, Cipolletta D, Naaz A, Wong J, Nayer A et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med 2009; 15: 930–939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ilan Y, Maron R, Tukpah AM, Maioli TU, Murugaiyan G, Yang K et al. Induction of regulatory T cells decreases adipose inflammation and alleviates insulin resistance in ob/ob mice. Proc Natl Acad Sci USA 2010; 107: 9765–9770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lundgren VM, Isomaa B, Lyssenko V, Laurila E, Korhonen P, Groop LC et al. GAD antibody positivity predicts type 2 diabetes in an adult population. Diabetes 2010; 59: 416–422.

    Article  CAS  PubMed  Google Scholar 

  90. Fosgerau K, Galle P, Hansen T, Albrechtsen A, Rieper Cde L, Pedersen BK et al. Interleukin-6 autoantibodies are involved in the pathogenesis of a subset of type 2 diabetes. J Endocrinol 2010; 204: 265–273.

    Article  CAS  PubMed  Google Scholar 

  91. Fredrikson GN, Anand DV, Hopkins D, Corder R, Alm R, Bengtsson E et al. Associations between autoantibodies against apolipoprotein B-100 peptides and vascular complications in patients with type 2 diabetes. Diabetologia 2009; 52: 1426–1433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zimering MB, Pan Z . Autoantibodies in type 2 diabetes induce stress fiber formation and apoptosis in endothelial cells. J Clin Endocrinol Metab 2009; 94: 2171–2177.

    Article  CAS  PubMed  Google Scholar 

  93. Hempel P, Karczewski P, Kohnert KD, Raabe J, Lemke B, Kunze R et al. Sera from patients with type 2 diabetes contain agonistic autoantibodies against G protein-coupled receptors. Scand J Immunol 2009; 70: 159–160.

    Article  CAS  PubMed  Google Scholar 

  94. Yang H, Youm YH, Vandanmagsar B, Rood J, Kumar KG, Butler AA et al. Obesity accelerates thymic aging. Blood 2009; 114: 3803–3812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Alkhouri N, Gornicka A, Berk MP, Thapaliya S, Dixon LJ, Kashyap S et al. Adipocyte apoptosis, a link between obesity, insulin resistance, and hepatic steatosis. J Biol Chem 2010; 285: 3428–3438.

    Article  CAS  PubMed  Google Scholar 

  96. Richardson SJ, Willcox A, Bone AJ, Foulis AK, Morgan NG . The prevalence of enteroviral capsid protein vp1 immunostaining in pancreatic islets in human type 1 diabetes. Diabetologia 2009; 52: 1143–1151.

    Article  CAS  PubMed  Google Scholar 

  97. Yoshioka M, Kayo T, Ikeda T, Koizumi A . A novel locus, Mody4, distal to D7Mit189 on chromosome 7 determines early-onset NIDDM in nonobese C57BL/6 (Akita) mutant mice. Diabetes 1997; 46: 887–894.

    Article  CAS  PubMed  Google Scholar 

  98. Mizoguchi A, Bhan AK . A case for regulatory B cells. J Immunol 2006; 176: 705–710.

    Article  CAS  PubMed  Google Scholar 

  99. Mizoguchi A, Mizoguchi E, Smith RN, Preffer FI, Bhan AK . Suppressive role of B cells in chronic colitis of T cell receptor alpha mutant mice. J Exp Med 1997; 186: 1749–1756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mizoguchi A, Mizoguchi E, Takedatsu H, Blumberg RS, Bhan AK . Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation. Immunity 2002; 16: 219–230.

    Article  CAS  PubMed  Google Scholar 

  101. Yanaba K, Bouaziz JD, Haas KM, Poe JC, Fujimoto M, Tedder TF . A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses. Immunity 2008; 28: 639–650.

    Article  CAS  PubMed  Google Scholar 

  102. Iwata Y, Matsushita T, Horikawa M, Dilillo DJ, Yanaba K, Venturi GM et al. Characterization of a rare IL-10-competent B-cell subset in humans that parallels mouse regulatory B10 cells. Blood 2011; 117: 530–541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Blair PA, Norena LY, Flores-Borja F, Rawlings DJ, Isenberg DA, Ehrenstein MR et al. CD19(+)CD24(hi)CD38(hi) B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic lupus erythematosus patients. Immunity 2010; 32: 129–140.

    Article  CAS  PubMed  Google Scholar 

  104. Ganley-Leal LM, Liu X, Wetzler LM . Toll-like receptor 2-mediated human B cell differentiation. Clin Immunol 2006; 120: 272–284.

    Article  CAS  PubMed  Google Scholar 

  105. Duddy ME, Alter A, Bar-Or A . Distinct profiles of human B cell effector cytokines: a role in immune regulation? J Immunol 2004; 172: 3422–3427.

    Article  CAS  PubMed  Google Scholar 

  106. Jagannathan M, Hasturk H, Liang Y, Shin H, Hetzel JT, Kantarci A et al. TLR cross-talk specifically regulates cytokine production by B cells from chronic inflammatory disease patients. J Immunol 2009; 183: 7461–7470.

    Article  CAS  PubMed  Google Scholar 

  107. Yanaba K, Bouaziz JD, Matsushita T, Tsubata T, Tedder TF . The development and function of regulatory B cells expressing IL-10 (B10 cells) requires antigen receptor diversity and TLR signals. J Immunol 2009; 182: 7459–7472.

    Article  CAS  PubMed  Google Scholar 

  108. Evans JG, Chavez-Rueda KA, Eddaoudi A, Meyer-Bahlburg A, Rawlings DJ, Ehrenstein MR et al. Novel suppressive function of transitional 2 B cells in experimental arthritis. J Immunol 2007; 178: 7868–7878.

    Article  CAS  PubMed  Google Scholar 

  109. Tian J, Zekzer D, Hanssen L, Lu Y, Olcott A, Kaufman DL . Lipopolysaccharide-activated B cells down-regulate Th1 immunity and prevent autoimmune diabetes in nonobese diabetic mice. J Immunol 2001; 167: 1081–1089.

    Article  CAS  PubMed  Google Scholar 

  110. Anolik JH, Looney RJ, Lund FE, Randall TD, Sanz I . Insights into the heterogeneity of human B cells: diverse functions, roles in autoimmunity, and use as therapeutic targets. Immunol Res 2009.

  111. Duddy M, Niino M, Adatia F, Hebert S, Freedman M, Atkins H et al. Distinct effector cytokine profiles of memory and naive human B cell subsets and implication in multiple sclerosis. J Immunol 2007; 178: 6092–6099.

    Article  CAS  PubMed  Google Scholar 

  112. Roll P, Palanichamy A, Kneitz C, Dorner T, Tony HP . Regeneration of B cell subsets after transient B cell depletion using anti-CD20 antibodies in rheumatoid arthritis. Arthritis Rheum 2006; 54: 2377–2386.

    Article  CAS  PubMed  Google Scholar 

  113. Anolik JH, Barnard J, Owen T, Zheng B, Kemshetti S, Looney RJ et al. Delayed memory B cell recovery in peripheral blood and lymphoid tissue in systemic lupus erythematosus after B cell depletion therapy. Arthritis Rheum 2007; 56: 3044–3056.

    Article  CAS  PubMed  Google Scholar 

  114. Anolik JH, Friedberg JW, Zheng B, Barnard J, Owen T, Cushing E et al. B cell reconstitution after rituximab treatment of lymphoma recapitulates B cell ontogeny. Clin Immunol 2007; 122: 139–145.

    Article  CAS  PubMed  Google Scholar 

  115. van Exel E, Gussekloo J, de Craen AJ, Frolich M, Bootsma-Van Der Wiel A, Westendorp RG . Low production capacity of interleukin-10 associates with the metabolic syndrome and type 2 diabetes: the Leiden 85-Plus Study. Diabetes 2002; 51: 1088–1092.

    Article  CAS  PubMed  Google Scholar 

  116. Fillatreau S, Sweenie CH, McGeachy MJ, Gray D, Anderton SM . B cells regulate autoimmunity by provision of IL-10. Nat Immunol 2002; 3: 944–950.

    Article  CAS  PubMed  Google Scholar 

  117. Mauri C, Gray D, Mushtaq N, Londei M . Prevention of arthritis by interleukin 10-producing B cells. J Exp Med 2003; 197: 489–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Harris DP, Goodrich S, Mohrs K, Mohrs M, Lund FE . Cutting edge: the development of IL-4-producing B cells (B effector 2 cells) is controlled by IL-4, IL-4 receptor alpha, and Th2 cells. J Immunol 2005; 175: 7103–7107.

    Article  CAS  PubMed  Google Scholar 

  119. Harris DP, Haynes L, Sayles PC, Duso DK, Eaton SM, Lepak NM et al. Reciprocal regulation of polarized cytokine production by effector B and T cells. Nat Immunol 2000; 1: 475–482.

    Article  CAS  PubMed  Google Scholar 

  120. Durali D, de Goer de Herve MG, Giron-Michel J, Azzarone B, Delfraissy JF, Taoufik Y . In human B cells, IL-12 triggers a cascade of molecular events similar to Th1 commitment. Blood 2003; 102: 4084–4089.

    Article  CAS  PubMed  Google Scholar 

  121. Kristiansen OP, Mandrup-Poulsen T . Interleukin-6 and diabetes: the good, the bad, or the indifferent? Diabetes 2005; 54 (Suppl 2): S114–S124.

    Article  CAS  PubMed  Google Scholar 

  122. Pickup JC, Chusney GD, Thomas SM, Burt D . Plasma interleukin-6, tumour necrosis factor alpha and blood cytokine production in type 2 diabetes. Life Sci 2000; 67: 291–300.

    Article  CAS  PubMed  Google Scholar 

  123. Nikolajczyk BS . B cells as under-appreciated mediators of non-auto-immune inflammatory disease. Cytokine 2010; 50: 234–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hotamisligil GS . Inflammation and metabolic disorders. Nature 2006; 444: 860–867.

    Article  CAS  PubMed  Google Scholar 

  125. Andriankaja OM, Barros SP, Moss K, Panagakos FS, DeVizio W, Beck J et al. Levels of serum interleukin (IL)-6 and gingival crevicular fluid of IL-1beta and prostaglandin E(2) among non-smoking subjects with gingivitis and type 2 diabetes. J Periodontol 2009; 80: 307–316.

    Article  CAS  PubMed  Google Scholar 

  126. Fain JN . Release of interleukins and other inflammatory cytokines by human adipose tissue is enhanced in obesity and primarily due to the nonfat cells. Vitam Horm 2006; 74: 443–477.

    Article  CAS  PubMed  Google Scholar 

  127. Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F . Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol 2007; 8: 942–949.

    Article  CAS  PubMed  Google Scholar 

  128. Yang L, Anderson DE, Baecher-Allan C, Hastings WD, Bettelli E, Oukka M et al. IL-21 and TGF-beta are required for differentiation of human T(H)17 cells. Nature 2008; 454: 350–352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Shoelson SE, Herrero L, Naaz A . Obesity, inflammation, and insulin resistance. Gastroenterology 2007; 132: 2169–2180.

    Article  CAS  PubMed  Google Scholar 

  130. Wegner M, Winiarska H, Bobkiewicz-Kozlowska T, Dworacka M . IL-12 serum levels in patients with type 2 diabetes treated with sulphonylureas. Cytokine 2008; 42: 312–316.

    Article  CAS  PubMed  Google Scholar 

  131. Tsiavou A, Degiannis D, Hatziagelaki E, Koniavitou K, Raptis SA . Intracellular IFN-gamma production and IL-12 serum levels in latent autoimmune diabetes of adults (LADA) and in type 2 diabetes. J Interferon Cytokine Res 2004; 24: 381–387.

    Article  CAS  PubMed  Google Scholar 

  132. Manetti R, Parronchi P, Giudizi MG, Piccinni MP, Maggi E, Trinchieri G et al. Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4-producing Th cells. J Exp Med 1993; 177: 1199–1204.

    Article  CAS  PubMed  Google Scholar 

  133. Wu CY, Demeure C, Kiniwa M, Gately M, Delespesse G . IL-12 induces the production of IFN-gamma by neonatal human CD4T cells. J Immunol 1993; 151: 1938–1949.

    CAS  PubMed  Google Scholar 

  134. Yssel H, Fasler S, de Vries JE, de Waal Malefyt R . IL-12 transiently induces IFN-gamma transcription and protein synthesis in human CD4+ allergen-specific Th2T cell clones. Int Immunol 1994; 6: 1091–1096.

    Article  CAS  PubMed  Google Scholar 

  135. Puddu P, Fantuzzi L, Borghi P, Varano B, Rainaldi G, Guillemard E et al. IL-12 induces IFN-gamma expression and secretion in mouse peritoneal macrophages. J Immunol 1997; 159: 3490–3497.

    CAS  PubMed  Google Scholar 

  136. Kim E, Kim SH, Kim S, Kim TS . The novel cytokine p43 induces IL-12 production in macrophages via NF-kappaB activation, leading to enhanced IFN-gamma production in CD4+ T cells. J Immunol 2006; 176: 256–264.

    Article  CAS  PubMed  Google Scholar 

  137. Gately MK, Warrier RR, Honasoge S, Carvajal DM, Faherty DA, Connaughton SE et al. Administration of recombinant IL-12 to normal mice enhances cytolytic lymphocyte activity and induces production of IFN-gamma in vivo. Int Immunol 1994; 6: 157–167.

    Article  CAS  PubMed  Google Scholar 

  138. Nastala CL, Edington HD, McKinney TG, Tahara H, Nalesnik MA, Brunda MJ et al. Recombinant IL-12 administration induces tumor regression in association with IFN-gamma production. J Immunol 1994; 153: 1697–1706.

    CAS  PubMed  Google Scholar 

  139. Shin JH, Shin DW, Noh M . Interleukin-17A inhibits adipocyte differentiation in human mesenchymal stem cells and regulates pro-inflammatory responses in adipocytes. Biochem Pharmacol 2009; 77: 1835–1844.

    Article  CAS  PubMed  Google Scholar 

  140. McGillicuddy FC, Chiquoine EH, Hinkle CC, Kim RJ, Shah R, Roche HM et al. Interferon gamma attenuates insulin signaling, lipid storage, and differentiation in human adipocytes via activation of the JAK/STAT pathway. J Biol Chem 2009; 284: 31936–31944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Nishio J, Feuerer M, Wong J, Mathis D, Benoist C . Anti-CD3 therapy permits regulatory T cells to surmount T cell receptor-specified peripheral niche constraints. J Exp Med 2010; 207: 1879–1889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Silva HM, Vieira PM, Costa PL, Pimentel BM, Moro AM, Kalil J et al. Novel humanized anti-CD3 antibodies induce a predominantly immunoregulatory profile in human peripheral blood mononuclear cells. Immunol Lett 2009; 125: 129–136.

    Article  CAS  PubMed  Google Scholar 

  143. Herold KC, Hagopian W, Auger JA, Poumian-Ruiz E, Taylor L, Donaldson D et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N Engl J Med 2002; 346: 1692–1698.

    Article  CAS  PubMed  Google Scholar 

  144. Edwards JC, Szczepanski L, Szechinski J, Filipowicz-Sosnowska A, Emery P, Close DR et al. Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N Engl J Med 2004; 350: 2572–2581.

    Article  CAS  PubMed  Google Scholar 

  145. Ng KP, Cambridge G, Leandro MJ, Edwards JC, Ehrenstein M, Isenberg DA . B cell depletion therapy in systemic lupus erythematosus: long-term follow-up and predictors of response. Ann Rheum Dis 2007; 66: 1259–1262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Hauser SL, Waubant E, Arnold DL, Vollmer T, Antel J, Fox RJ et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med 2008; 358: 676–688.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH R01 AI54611, NIH R21 DK089270 and a Research Grant from the American Diabetes Association. The authors thank Susan Fried, Gerald Denis, Jongsoon Lee, Marty Obin, and Marie McDonnell for valuable conversations related to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B S Nikolajczyk.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikolajczyk, B., Jagannathan-Bogdan, M., Shin, H. et al. State of the union between metabolism and the immune system in type 2 diabetes. Genes Immun 12, 239–250 (2011). https://doi.org/10.1038/gene.2011.14

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2011.14

Keywords

This article is cited by

Search

Quick links