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Abstract

Since its first description more than 40 years ago,

fluorescein angiography had a crucial role in the

diagnosis and management of chorioretinal

vascular disorders such as neovascular age-

related macular degeneration. Although

fluorescein angiography permits visualization of

the retinal microcirculation in exquisite detail,

visualization of the choroidal circulation is more

limited. Moreover, fluorescein angiography

provides only minimal information regarding

the functional consequences of vascular disease

and allows, at best, only semi-quantitative

assessment of retinal thickness. In recent years,

the development of other chorioretinal imaging

modalities, such as indocyanine green

angiography, fundus autofluorescence, and

optical coherence tomography (OCT), has

addressed many of these issues. In particular,

OCT has become an integral tool for

vitreoretinal specialists as it allows high-

resolution cross-sectional images of the

neurosensory retina to be obtained in a

non-invasive manner. The latest generation of

commercial OCT technologyFspectral domain

OCTFoffers high-speed scanning that allows

complete coverage of the macular area,

generation of three-dimensional

retinal reconstructions, and precise image

registration for inter-visit comparisons. The

high speed of spectral domain OCT also

facilitates B-scan averaging, which reduces

speckle noise artefact and allows unparalleled

visualization of the outer retina and choroid. In

the near future, further advances in OCT

technology (eg Doppler OCT) are likely to

dramatically enhance the diagnosis and

management of patients with chorioretinal

vascular disease.
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Introduction

In 1961, Novotny and Alvis1 produced the

first fluorescein angiograms providing images

of the chorioretinal vascular system. Since

that time, chorioretinal imagingFprincipally

stereoscopic photography and fluorescein

angiographyFhad a crucial role in the

management of patients with chorioretinal

vascular diseases such as neovascular age-

related macular degeneration (AMD). More

recently, the development of a new imaging

modality, optical coherence tomography

(OCT), has addressed many of the limitations of

these traditional imaging techniques, and

reinforced the central role of imaging in the

management of these patients. In this

article, we describe the principal chorioretinal

imaging techniques in use today, as well as a

number of new technologies currently in

development that may transform the

management of chorioretinal vascular

disease.

Fluorescein angiography

Fluorescein angiography possesses a number of

features that have made it central to the

management of chorioretinal vascular disease.2

In particular, it permits visualization of the

retinal microcirculation in exquisite detail,

allowing identification of vascular

abnormalities and areas of retinal non-

perfusion. It also enables visualization of many

pathologic changes affecting the choroidal

vasculature (Figure 1). Through the assessment

of vascular leakage, fluorescein angiography

also provides important functional information

(ie the integrity of the blood–retinal barrier).

These features have allowed fluorescein

angiography to show its worth in a wide

variety of clinical settings, as well as in the

context of important randomized clinical

trials (eg the Early Treatment of Diabetic

Retinopathy Study (ETDRS) for diabetic

retinopathy).3
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Limitations of fluorescein angiography

Despite these advantages, fluorescein angiography has a

number of limitations. First, it is an invasive procedure

with complications that range from minor (nausea and

vomiting) to serious (anaphylaxis). Second, its ability to

visualize the choroidal circulation is limited, with

considerable loss of vascular detail over time because of

progressive dye leakage. Third, even with the use of

stereoscopic images, it has a limited axial resolution that

allowsFat bestFsemi-quantitative measurement of

retinal thickness that is subject to considerable

variability.4 Finally, fluorescein angiography provides

only limited information regarding the structural and

functional consequences of vascular disease. Fortunately,

in recent years, advances in other chorioretinal imaging

modalities have addressed many of these deficiencies.

Indocyanine green angiography

Indocyanine green angiography, first described in 1972,

allows enhanced visualization of the choroidal

circulationFunlike fluorescein, indocyanine green is

almost completely bound to protein and tends not to leak

through the fenestrated capillaries of the choriocapillaris

obscuring the larger choroidal vessels (Figure 2).5 Despite

this, initial usage was limited by the poor fluorescence

efficiency of indocyanine green, and the limited ability to

produce high-resolution images on infrared film. Since

the 1990s, however, the development of high-speed,

high-resolution digital imaging systems has resolved

many of these issues.6 Although still not commonly

performed in clinical practice, indocyanine green

angiography has improved our understanding of

disorders such as neovascular AMD (especially retinal

angiomatous proliferation and polypoidal choroidal

vasculopathy), central serous chorioretinopathy, and

chorioretinal inflammatory disorders.7

Fundus autofluorescence

Autofluorescence is an intrinsic property of many

structures within the eye (eg retinal pigment

epithelium (RPE)), such that transient emission of light

occurs when these structures are illuminated by an

exogenous source.8 Autofluorescence of the RPE is

related to the intracellular accumulation of lipofuscin, a

byproduct of incomplete photoreceptor outer segment

degradation. Lipofuscin accumulation is a hallmark of

normal aging in many cells, but may also be a common

downstream pathogenic mechanism in a number of

retinal degenerative diseases. As a result, fundus

autofluorescence (FAF) imaging has generated

considerable interest in recent years for patients with

both inherited and acquired retinal degenerations

(Figure 3). In fact, FAF imaging has recently been

approved by the US Food and Drug Administration

as a primary end point in clinical trials of non-

neovascular AMD (geographic atrophy).9

The role of FAF imaging in chorioretinal vascular

disease is less well established. In neovascular AMD, for

example, the continuity of the FAF signal over the lesion

may provide prognostic information.10 In patients with

this disorder, FAF may be relatively normal

(‘continuous’) early on, a finding that correlates with

better visual acuity, and presumably represents

continued RPE viability. However, with longer-standing

disease, decreased FAF is often seen, a finding that

correlates with decreased visual acuity, and presumably

represents photoreceptor loss and RPE atrophy. FAF

imaging may also be of diagnostic use in less commonly

Figure 1 Fluorescein angiogram showing evidence of late
stippled hyperfluorescence consistent with fibrovascular pig-
ment epithelium detachment.

Figure 2 Indocyanine green angiography showing evidence of
peripapillary choroidal neovascularization.
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seen retinal vascular disorders such as type 2 idiopathic

juxtafoveal telangiectasia, in which central depletion of

macular pigment results in a characteristic loss of normal

foveal hypofluorescence.11

Optical coherence tomography

OCT, first described in 1991, allows high-resolution

cross-sectional images of the neurosensory retina to be

obtained in a non-invasive manner.12 As a result, retinal

imaging with OCT has quickly become an integral tool

for the management of chorioretinal vascular disorders.

Time domain OCT

OCT works by measuring the properties of light waves

reflected from tissue (analogous to ultrasonography).13 In

the original OCT systems, movement of a reference

mirror allowed acquisition of depth information over

timeF‘time domain’ OCT. The release of the first

commercial time domain OCT systems, in 1996 (OCT1)

and 2000 (OCT2), quickly established the clinical benefits

of OCTFin particular for the depiction of the

vitreomacular interface. However, it was the release of

the third generation of time domain OCT devices in 2002

that heralded the widespread adoption of OCT by retinal

specialists. OCT3 (Stratus OCT, Carl Zeiss Meditec,

Dublin, CA, USA) offered faster scanning speed (400 A-

scans per second) and higher resolution (8–10 microns

axially)Ffeatures that provided significant advantages

for the management of chorioretinal vascular diseases.

Clinical applications of time domain OCT

Macular oedema is a common cause of vision loss in

patients with retinal vascular disease.14 The greater axial

resolution of Stratus OCT (particularly when compared

to stereoscopic fundus photography) has allowed

improved characterization of the structural changes that

occur in macular oedema. In diabetic macular oedema,

for example, distinct patterns of morphologic change

may be seen on OCT: diffuse retinal thickening, cystoid

macular oedema, serous retinal detachment, and

vitreomacular traction (retinal vascular diseases are also

commonly accompanied by epiretinal membrane

formation) (Figure 4).15–17 In addition to these qualitative

assessments, measurements of retinal thickness provided

by time domain OCT have become important criteria for

determining eligibility for clinical trials, as well as being

adopted as anatomic end points in these trials.18

In recent years, driven by the seminal findings of the

PrONTO study for neovascular AMD, OCT has also been

rapidly adopted for the management of patients with

choroidal vascular disease.19,20 In the PrONTO study, OCT-

derived criteria were used both for determination of

eligibility, and for re-treatment decisions (eg presence of

subretinal fluid), in patients receiving intravitreal

ranibizumab. In 2007, the following OCT-derived

guidelines, for the treatment of neovascular AMD, were

suggested by Brown and Regillo: (1) initial monthly

treatment, until no intraretinal, subretinal, or sub-RPE

fluid; (2) consideration of fluorescein angiography if visual

acuity changes do not correlate with anatomic

improvements; (3) re-treatment based on qualitative

inspection of all six high-resolution Stratus OCT scans with

re-treatment for any recurrence of intraretinal, subretinal,

or sub-RPE fluid.21 These guidelines or variations, thereof,

have been quickly adopted by retina specialists

worldwide, greatly increasing the utilization of OCT in the

management of patients with choroidal vascular disease.

Limitations of time domain OCT

Although it is clear that OCT successfully addresses

many of the limitations of fluorescein angiography, the

use of OCT in choroidal vascular diseases has also

highlighted many of the limitations of time domain OCT.

OCT-derived retinal thickness values are obtained by

automated detection (segmentation) of the inner and

outer retinal boundaries. Unfortunately, however, this

automated detection frequently fails in patients with

retinal disease, particularly in patients with choroidal

vascular disease.22 Moreover, even if boundary detection

is correct, many specific disease components are not

quantified by OCT (eg subretinal fluid, pigment

epithelium detachments). To ensure the accuracy of

retinal thickness measurements, and to allow

quantification of other morphologic parameters, manual

segmentation of OCT images is often performed in

dedicated image reading centres.23–25

Figure 3 Fundus autofluorescence image obtained with a
confocal scanning laser ophthalmoscopeFgeographic atrophy
may be clearly seen as a central area of hypoautofluorescence.
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Time domain OCT systems are also limited by their

requirement for a mobile reference mirrorFa

requirement that limits their image acquisition speed.26

Consequently, typical time domain OCT scanning

protocols capture o5% of the macula in a single

image set and significant interpolation is required to

construct retinal thickness maps. As a result, time

domain OCT scanning protocols often miss small lesions

that fall between the scanned lines, and any

segmentation errors that occur may often be propagated

across large areas. Fortunately, these limitations have

been largely overcome in recent years with the latest

generation of commercial OCT technologyF‘spectral

domain’ OCT.

Spectral domain OCT

In spectral domain OCT systems, the use of spectral

interferometry and a mathematical function (Fourier

transformation) removes the need for a mobile reference

mirror, and allows images to be acquired 50–100 times

more quickly than in time domain systems (typically

over 20 000 A-scans per second).27–29 The high speed of

spectral domain OCT allows significantly greater

coverage of the macular area using raster scanning

protocols (eg 128 B-scans, with each B-scan consisting of

512 A-scans). The greater speed of spectral domain OCT

also reduces the frequency of eye motion artefacts and

allows the creation of three-dimensional reconstructions

of the retina. In addition, by summing the intensity

values in each A-scan, the dense scanning of spectral

domain OCT allows generation of ‘projection’ images

that appear superficially similar to fundus photographic

images. These projection images contain invariant

landmarks that can be aligned with standard fundus

photographic images, facilitating direct comparison with

these images and allowing more precise registration for

inter-visit comparisons.30

The rapid scanning of spectral domain OCT also

allows averaging of multiple B-scan images to be readily

performed, reducing speckle noise and allowing greater

visualization of fine structuresFin particular, the

structures of the outer retina and choroid.31 Although

spectral domain OCT has a higher sensitivity than time

domain OCT, spectral domain image quality changes as

the scan moves vertically on the screen. By adjusting the

spectral domain OCT device to maximize its sensitivity

at the choroid, and through the use of B-scan averaging,

extremely high-quality images may be obtained. Such

imaging allows clear visualization of outer retinal

structures such as the external limiting membrane, and

enhanced visualization of the architecture of

fibrovascular tissue in neovascular AMD (Figure 5).32–34

Current limitations and future directions

Although it represents a significant advance, spectral

domain OCT also has a number of limitations. As with

time domain OCT, the transverse resolution of spectral

domain OCT is limited by the optics of the ocular system

and, as a result, spectral domain OCT does not allow

visualization of individual cells.35 In addition, the

functional data provided by spectral domain OCT

Figure 4 Patterns of structural change on optical coherence
tomography (OCT) in patients with diabetic macular oedema.
OCT B-scans show sponge-like retinal thickening (a), cystoid
macular oedema (b), serous retinal detachment (c), and
vitreomacular traction with peaking of the retinal surface (d).
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remains rudimentary at best. Furthermore, better

segmentation software is still required to facilitate precise

quantitative subanalysis of dense raster scan data sets.36

Not surprisingly, future OCT technologies will likely

address these limitations. Prototype Doppler OCT

systems allow measurement of retinal blood flow by the

assessment of light reflectivity changes in retinal blood

vessels over short time periods.37 ‘Swept-source’ OCT

systems allow significant increases in imaging

sensitivity and speed (eg 4300 000 A-scans per second),

through the use of a tunable laser,38 whereas

polarization-sensitive OCT may prove to encode much of

the information provided by FAF.39 Finally, the use of

adaptive optics in OCT devices may increase the

transverse resolution of OCT systems and provide

cellular level detail.40

Conclusion

In recent years, retinal imaging with OCT has become

central to the treatment of patients with chorioretinal

disorders. Using current, commercially available,

technology, it is now possible to obtain high-quality

cross-sectional images of the choroidFsuch imaging

may represent the next frontier in our understanding of

retinal disease pathogenesis. Furthermore, the

applications of OCT in chorioretinal vascular disease are

likely to grow with functional extensions of this

technology in the near future (eg Doppler OCT may lead

to a new wave of categorizing retinal vascular disorders

on the basis of blood flow). Such advances, in association

with improvements in other imaging techniques, are

likely to dramatically enhance our management of

patients with chorioretinal disease.
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