Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Discovery of enzymes for toluene synthesis from anoxic microbial communities

Abstract

Microbial toluene biosynthesis was reported in anoxic lake sediments more than three decades ago, but the enzyme catalyzing this biochemically challenging reaction has never been identified. Here we report the toluene-producing enzyme PhdB, a glycyl radical enzyme of bacterial origin that catalyzes phenylacetate decarboxylation, and its cognate activating enzyme PhdA, a radical S-adenosylmethionine enzyme, discovered in two distinct anoxic microbial communities that produce toluene. The unconventional process of enzyme discovery from a complex microbial community (>300,000 genes), rather than from a microbial isolate, involved metagenomics- and metaproteomics-enabled biochemistry, as well as in vitro confirmation of activity with recombinant enzymes. This work expands the known catalytic range of glycyl radical enzymes (only seven reaction types had been characterized previously) and aromatic-hydrocarbon-producing enzymes, and will enable first-time biochemical synthesis of an aromatic fuel hydrocarbon from renewable resources, such as lignocellulosic biomass, rather than from petroleum.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Glycyl radical enzymes encoded in the toluene-producing sewage culture metagenome and their association with in vitro phenylacetate decarboxylase activity.
Fig. 2: Homologous phenylacetate decarboxylase gene clusters from sewage and lake sediment cultures.
Fig. 3: Reactions catalyzed by PhdA and PhdB.
Fig. 4: Multiple-sequence alignments comparing PhdB and PhdA with other glycyl radical enzymes and glycyl radical activating enzymes, respectively.
Fig. 5: Characterization of the putatively toluene-producing Acidobacteria strain Tolsyn based on its recovered genome.

Similar content being viewed by others

References

  1. Galperin, M. Y. & Koonin, E. V. From complete genome sequence to ‘complete’ understanding? Trends Biotechnol. 28, 398–406 (2010).

    Article  CAS  Google Scholar 

  2. Gerlt, J. A. et al. The Enzyme Function Initiative. Biochemistry 50, 9950–9962 (2011).

    Article  CAS  Google Scholar 

  3. Anton, B. P. et al. The COMBREX project: design, methodology, and initial results. PLoS Biol. 11, e1001638 (2013).

    Article  CAS  Google Scholar 

  4. Lespinet, O. & Labedan, B. Orphan enzymes? Science 307, 42 (2005).

    Article  CAS  Google Scholar 

  5. Sorokina, M., Stam, M., Médigue, C., Lespinet, O. & Vallenet, D. Profiling the orphan enzymes. Biol. Direct 9, 10 (2014).

    Article  Google Scholar 

  6. McKenna, R. & Nielsen, D. R. Styrene biosynthesis from glucose by engineered E. coli. Metab. Eng. 13, 544–554 (2011).

    Article  CAS  Google Scholar 

  7. Jüttner, F. & Henatsch, J. J. Anoxic hypolimnion is a significant source of biogenic toluene. Nature 323, 797–798 (1986).

    Article  Google Scholar 

  8. Zargar, K. et al. In vitro characterization of phenylacetate decarboxylase, a novel enzyme catalyzing toluene biosynthesis in an anaerobic microbial community. Sci. Rep. 6, 31362 (2016).

    Article  CAS  Google Scholar 

  9. Fischer-Romero, C., Tindall, B. J. & Jüttner, F. Tolumonas auensis gen. nov., sp. nov., a toluene-producing bacterium from anoxic sediments of a freshwater lake. Int. J. Syst. Bacteriol. 46, 183–188 (1996).

    Article  CAS  Google Scholar 

  10. Pons, J. L., Rimbault, A., Darbord, J. C. & Leluan, G. [Biosynthesis of toluene in Clostridium aerofoetidu m strain WS]. Ann. Microbiol. (Paris) 135B, 219–222 (1984).

    CAS  Google Scholar 

  11. Akhtar, M. K., Turner, N. J. & Jones, P. R. Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities. Proc. Natl. Acad. Sci. USA 110, 87–92 (2013).

    Article  CAS  Google Scholar 

  12. Schirmer, A., Rude, M. A., Li, X., Popova, E. & del Cardayre, S. B. Microbial biosynthesis of alkanes. Science 329, 559–562 (2010).

    Article  CAS  Google Scholar 

  13. Selmer, T. & Andrei, P. I. p-Hydroxyphenylacetate decarboxylase from Clostridium difficile. A novel glycyl radical enzyme catalysing the formation of p-cresol. Eur. J. Biochem. 268, 1363–1372 (2001).

    Article  CAS  Google Scholar 

  14. Yu, L., Blaser, M., Andrei, P. I., Pierik, A. J. & Selmer, T. 4-Hydroxyphenylacetate decarboxylases: properties of a novel subclass of glycyl radical enzyme systems. Biochemistry 45, 9584–9592 (2006).

    Article  CAS  Google Scholar 

  15. Selmer, T., Pierik, A. J. & Heider, J. New glycyl radical enzymes catalysing key metabolic steps in anaerobic bacteria. Biol. Chem. 386, 981–988 (2005).

    Article  CAS  Google Scholar 

  16. Shisler, K. A. & Broderick, J. B. Glycyl radical activating enzymes: structure, mechanism, and substrate interactions. Arch. Biochem. Biophys. 546, 64–71 (2014).

    Article  CAS  Google Scholar 

  17. Leuthner, B. et al. Biochemical and genetic characterization of benzylsuccinate synthase from Thauera aromatica: a new glycyl radical enzyme catalysing the first step in anaerobic toluene metabolism. Mol. Microbiol. 28, 615–628 (1998).

    Article  CAS  Google Scholar 

  18. O’Brien, J. R. et al. Insight into the mechanism of the B12-independent glycerol dehydratase from Clostridium butyricum: preliminary biochemical and structural characterization. Biochemistry 43, 4635–4645 (2004).

    Article  Google Scholar 

  19. Beller, H. R. & Spormann, A. M. Substrate range of benzylsuccinate synthase from Azoarcus sp. strain T. FEMS Microbiol. Lett. 178, 147–153 (1999).

    Article  CAS  Google Scholar 

  20. Becker, A. et al. Structure and mechanism of the glycyl radical enzyme pyruvate formate-lyase. Nat. Struct. Biol. 6, 969–975 (1999).

    Article  CAS  Google Scholar 

  21. Larsson, K. M., Andersson, J., Sjöberg, B. M., Nordlund, P. & Logan, D. T. Structural basis for allosteric substrate specificity regulation in anaerobic ribonucleotide reductases. Structure 9, 739–750 (2001).

    Article  CAS  Google Scholar 

  22. Heider, J., Spormann, A. M., Beller, H. R. & Widdel, F. Anaerobic bacterial metabolism of hydrocarbons. FEMS Microbiol. Rev. 22, 459–473 (1998).

    Article  CAS  Google Scholar 

  23. Feliks, M., Martins, B. M. & Ullmann, G. M. Catalytic mechanism of the glycyl radical enzyme 4-hydroxyphenylacetate decarboxylase from continuum electrostatic and QC/MM calculations. J. Am. Chem. Soc. 135, 14574–14585 (2013).

    Article  CAS  Google Scholar 

  24. Kalnins, G. et al. Structure and function of CutC choline lyase from human microbiota bacterium Klebsiella pneumoniae. J. Biol. Chem. 290, 21732–21740 (2015).

    Article  CAS  Google Scholar 

  25. Craciun, S. & Balskus, E. P. Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme. Proc. Natl. Acad. Sci. USA 109, 21307–21312 (2012).

    Article  CAS  Google Scholar 

  26. Levin, B. J. et al. A prominent glycyl radical enzyme in human gut microbiomes metabolizes trans-4-hydroxy-l-proline. Science 355, eaai8386 (2017).

    Article  Google Scholar 

  27. Funk, M. A., Marsh, E. N. & Drennan, C. L. Substrate-bound structures of benzylsuccinate synthase reveal how toluene is activated in anaerobic hydrocarbon degradation. J. Biol. Chem. 290, 22398–22408 (2015).

    Article  CAS  Google Scholar 

  28. Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).

    Article  Google Scholar 

  29. Martins, B. M. et al. Structural basis for a Kolbe-type decarboxylation catalyzed by a glycyl radical enzyme. J. Am. Chem. Soc. 133, 14666–14674 (2011).

    Article  CAS  Google Scholar 

  30. Kielak, A. M., Barreto, C. C., Kowalchuk, G. A., van Veen, J. A. & Kuramae, E. E. The ecology of Acidobacteria: moving beyond genes and genomes. Front. Microbiol. 7, 744 (2016).

    Google Scholar 

  31. Ward, N. L. et al. Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl. Environ. Microbiol. 75, 2046–2056 (2009).

    Article  CAS  Google Scholar 

  32. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  Google Scholar 

  33. Dawson, L. F., Stabler, R. A. & Wren, B. W. Assessing the role of p-cresol tolerance in Clostridium difficile. J. Med. Microbiol. 57, 745–749 (2008).

    Article  Google Scholar 

  34. Schneider, S., Mohamed, M. E. S. & Fuchs, G. Anaerobic metabolism of L-phenylalanine via benzoyl-CoA in the denitrifying bacterium Thauera aromatica. Arch. Microbiol. 168, 310–320 (1997).

    Article  CAS  Google Scholar 

  35. Carmona, M. et al. Anaerobic catabolism of aromatic compounds: a genetic and genomic view. Microbiol. Mol. Biol. Rev. 73, 71–133 (2009).

    Article  CAS  Google Scholar 

  36. Molenaar, D., Bosscher, J. S., ten Brink, B., Driessen, A. J. & Konings, W. N. Generation of a proton motive force by histidine decarboxylation and electrogenic histidine/histamine antiport in Lactobacillus buchneri. J. Bacteriol. 175, 2864–2870 (1993).

    Article  CAS  Google Scholar 

  37. Pereira, C. I., Matos, D., San Romão, M. V. & Crespo, M. T. Dual role for the tyrosine decarboxylation pathway in Enterococcus faecium E17: response to an acid challenge and generation of a proton motive force. Appl. Environ. Microbiol. 75, 345–352 (2009).

    Article  CAS  Google Scholar 

  38. Beller, H. R., Legler, T. C. & Kane, S. R. Genetic manipulation of the obligate chemolithoautotrophic bacterium Thiobacillus denitrificans. Methods Mol. Biol. 881, 99–136 (2012).

    Article  CAS  Google Scholar 

  39. Huntemann, M. et al. The standard operating procedure of the DOE-JGI Microbial Genome Annotation Pipeline (MGAP v.4). Stand. Genomic Sci. 10, 86 (2015).

    Article  Google Scholar 

  40. Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).

    Article  CAS  Google Scholar 

  41. Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    Article  CAS  Google Scholar 

  42. Studier, F. W. Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005).

    Article  CAS  Google Scholar 

  43. Gao, H. et al. Arabidopsis thaliana Nfu2 accommodates [2Fe-2S] or [4Fe-4S] clusters and is competent for in vitro maturation of chloroplast [2Fe-2S] and [4Fe-4S] cluster-containing proteins. Biochemistry 52, 6633–6645 (2013).

    Article  CAS  Google Scholar 

  44. Mackay, D. & Shiu, W. Y. A critical review of Henry’s Law constants for chemicals of environmental interest. J. Phys. Chem. Ref. Data 10, 1175–1199 (1981).

    Article  CAS  Google Scholar 

  45. Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for occurrences of a given motif. Bioinformatics 27, 1017–1018 (2011).

    Article  CAS  Google Scholar 

  46. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Article  CAS  Google Scholar 

  47. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    Article  CAS  Google Scholar 

  48. Letunic, I. & Bork, P. Interactive tree of life (iTOL)v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245 (2016).

    Article  CAS  Google Scholar 

  49. Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    Article  CAS  Google Scholar 

  50. Wu, Y. W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607 (2016).

    Article  CAS  Google Scholar 

  51. Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).

    Article  Google Scholar 

  52. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    Article  CAS  Google Scholar 

  53. Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).

    Article  CAS  Google Scholar 

  54. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641–1650 (2009).

    Article  CAS  Google Scholar 

  55. Biasini, M. et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 42, W252–W258 (2014).

    Article  CAS  Google Scholar 

  56. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  57. Vagin, A. A. et al. REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr. D Biol. Crystallogr. 60, 2184–2195 (2004).

    Article  Google Scholar 

  58. Davis, I. W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).

    Article  Google Scholar 

  59. Wu, Y.-W. ezTree: an automated pipeline for identifying phylogenetic marker genes and inferring evolutionary relationships among uncultivated prokaryotic draft genomes. BMC Genomics 19, 921 (2018).

Download references

Acknowledgements

We thank the following people from JBEI, LBNL, and JGI for their valuable contributions to this work: U. Karaoz, N. Hillson, A. DeGiovanni, E.-B. Goh, E. Baidoo, X. Wang, S. Wang, P. Sorensen, S. Yilmaz, G. Goyal, J. Heazlewood, T. Glavina del Rio, S. Malfatti, E. Eloe-Fadrosh, A. Rivers, and G. Tomaleri. We also thank M. Salemi (UC Davis Genome Center, Proteomics Core Facility). This work was part of the DOE Joint BioEnergy Institute (http://www.jbei.org), supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the US Department of Energy. Work conducted by the Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Contributions

H.R.B., A.V.R., K.Z., and R.M.S. conceived of and designed the experiments. A.V.R. (primarily) and A.K.S. conducted recombinant protein studies, K.Z. performed activity-based protein fractionation, R.M.S. cultivated lake sediment cultures, and H.R.B. assisted with all types of experiments. H.R.B., Y.-W.W., and A.V.R. analyzed the data. S.G.T. oversaw the production of metagenomic data, and C.J.P. oversaw the production of metaproteomic data. J.H.P. and P.D.A. performed molecular modeling analyses of PhdB. The manuscript was written by H.R.B. (primarily), and all other authors, including J.D.K., contributed to refinement of the text.

Corresponding author

Correspondence to Harry R. Beller.

Ethics declarations

Competing interests

J.D.K. has a financial interest in Amyris, Lygos, Demetrix, and Constructive Biology.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12, Supplementary Tables 1 and 2 and Supplementary Note 1

Life Sciences Reporting Summary

Supplementary Dataset 1

Shotgun proteomic data for FPLC fractions

Supplementary Dataset 2

Community composition for lake sediment culture

Supplementary Dataset 3

Community composition for sewage culture

Supplementary Dataset 4

JGI metagenome metadata and methods summary

Supplementary Dataset 5

Newick file for Fig. 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beller, H.R., Rodrigues, A.V., Zargar, K. et al. Discovery of enzymes for toluene synthesis from anoxic microbial communities. Nat Chem Biol 14, 451–457 (2018). https://doi.org/10.1038/s41589-018-0017-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-018-0017-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing