Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Measurement of the generalized spin polarizabilities of the neutron in the low-Q2 region

An Author Correction to this article was published on 03 March 2022

This article has been updated

Abstract

Understanding the nucleon spin structure in the regime where the strong interaction becomes truly strong poses a challenge to both experiment and theory. At energy scales below the nucleon mass of about 1 GeV, the intense interaction among the quarks and gluons inside the nucleon makes them highly correlated. Their coherent behaviour causes the emergence of effective degrees of freedom, requiring the application of non-perturbative techniques such as chiral effective field theory1. Here we present measurements of the neutron’s generalized spin polarizabilities that quantify the neutron’s spin precession under electromagnetic fields at very low energy-momentum transfer squared down to 0.035 GeV2. In this regime, chiral effective field theory calculations2,3,4 are expected to be applicable. Our data, however, show a strong discrepancy with these predictions, presenting a challenge to the current description of the neutron’s spin properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electron scattering off a neutron by the one-photon exchange process.
Fig. 2: The transverse–transverse cross-section σTT(ν, Q2) for 3He.
Fig. 3: The longitudinal–transverse interference cross-section σLT(ν, Q2) for 3He.
Fig. 4: The generalized spin polarizabilities \({\delta }_{{\mathrm{LT}}}^{n}({Q}^{2})\) and \({\gamma }_{0}^{n}({Q}^{2})\).
Fig. 5: The Schwinger integral \({I}_{{\mathrm{LT}}}^{n}({Q}^{2})\).

Similar content being viewed by others

Data availability

All experimental data that support the findings of this study are provided in the Supplementary Information or are available from J.P.C. (jpchen@jlab.org), A.D. (deurpam@jlab.org), C.P. (cpeng@jlab.org) or V.S. (vasulk@jlab.org) upon request.

Code availability

The computer codes that support the plots within this paper and the findings of this study are available from J.P.C. (jpchen@jlab.org), A.D. (deurpam@jlab.org), C.P. (cpeng@jlab.org) or V.S. (vasulk@jlab.org) upon request.

Change history

References

  1. Bernard, V., Kaiser, N. & Meissner, U.-G. Chiral dynamics in nucleons and nuclei. Int. J. Mod. Phys. E 4, 193–346 (1995).

    Article  ADS  Google Scholar 

  2. Bernard, V., Epelbaum, E., Krebs, H. & Meissner, U.-G. New insights into the spin structure of the nucleon. Phys. Rev. D 87, 054032 (2013).

    Article  ADS  Google Scholar 

  3. Lensky, V., Alarcón, J. M. & Pascalutsa, V. Moments of nucleon structure functions at next-to-leading order in baryon chiral perturbation theory. Phys. Rev. C 90, 055202 (2014).

    Article  ADS  Google Scholar 

  4. Alarcón, J. M., Hagelstein, F., Lensky, V. & Pascalutsa, V. Forward doubly-virtual Compton scattering off the nucleon in chiral perturbation theory. II. Spin polarizabilities and moments of polarized structure functions. Phys. Rev. D 102, 114026 (2020).

    Article  ADS  Google Scholar 

  5. Deur, A., Brodsky, S. J. & de Téramond, G. F. The QCD running coupling. Prog. Part. Nucl. Phys. 90, 1–74 (2016).

    Article  ADS  Google Scholar 

  6. Deur, A., Brodsky, S. J. & de Téramond, G. F. The spin structure of the nucleon. Rep. Prog. Phys. 82, 076201 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  7. Gell-Mann, M., Goldberger, M. L. & Thirring, W. E. Use of causality conditions in quantum theory. Phys. Rev. 95, 1612–1627 (1954).

    Article  ADS  MathSciNet  Google Scholar 

  8. Guichon, P. A. M., Liu, G. Q. & Thomas, A. W. Virtual Compton scattering and generalized polarizabilities of the proton. Nucl. Phys. A 591, 606–638 (1995).

    Article  ADS  Google Scholar 

  9. Hand, L. N. Experimental investigation of pion electroproduction. Phys. Rev. 129, 1834–1846 (1963).

    Article  ADS  Google Scholar 

  10. Chen, J.-P. Moments of spin structure functions: sum rules and polarizabilities. Int. J. Mod. Phys. E 19, 1893–1921 (2010).

    Article  ADS  Google Scholar 

  11. Amarian, M. et al. Measurement of the generalized forward spin polarizabilities of the neutron. Phys. Rev. Lett. 93, 152301 (2004).

    Article  ADS  Google Scholar 

  12. Bernard, V., Hemmert, T. R. & Meissner, U.-G. Spin structure of the nucleon at low-energies. Phys. Rev. D 67, 076008 (2003).

    Article  ADS  Google Scholar 

  13. Kao, C. W., Spitzenberg, T. & Vanderhaeghen, M. Burkhardt-Cottingham sum rule and forward spin polarizabilities in heavy baryon chiral perturbation theory. Phys. Rev. D 67, 016001 (2003).

    Article  ADS  Google Scholar 

  14. Hagelstein, F., Miskimen, R. & Pascalutsa, V. Nucleon polarizabilities: from Compton scattering to hydrogen atom. Prog. Part. Nucl. Phys. 88, 29–97 (2016).

    Article  ADS  Google Scholar 

  15. Alcorn, J. et al. Basic instrumentation for Hall A at Jefferson Lab. Nucl. Instrum. Methods Phys. Res. A 522, 294–346 (2004).

    Article  ADS  Google Scholar 

  16. Sulkosky, V. et al. Measurement of the 3He spin-structure functions and of neutron (3He) spin-dependent sum rules at 0.035 ≤ Q2 ≤ 0.24 GeV2. Phys. Lett. B 805, 135428 (2020).

    Article  Google Scholar 

  17. Garibaldi, F. et al. High-resolution hypernuclear spectroscopy at Jefferson Lab, Hall A. Phys. Rev. C 99, 054309 (2019).

    Article  ADS  Google Scholar 

  18. Ciofi degli Atti, C. & Scopetta, S. On the extraction of the neutron spin structure functions and the Gerasimov–Drell–Hearn integral from \({}^{3}\overrightarrow{{\rm{He}}}(\overrightarrow{e},{e}^{\prime})X\) data. Phys. Lett. B 404, 223–229 (1997).

    Article  ADS  Google Scholar 

  19. Deltuva, A., Fonseca, A. C. & Sauer, P. U. Momentum-space treatment of Coulomb interaction in three-nucleon reactions with two protons. Phys. Rev. C 71, 054005 (2005).

    Article  ADS  Google Scholar 

  20. Golak, J. et al. Proton polarizations in polarized 3He studied with the 3He (e, e-prime p) d and 3He (polarized-e, e-prime p) pn processes. Phys. Rev. C 72, 054005 (2005).

    Article  ADS  Google Scholar 

  21. Drechsel, D., Hanstein, O., Kamalov, S. S. & Tiator, L. A unitary isobar model for pion photo- and electroproduction on the proton up to 1 GeV. Nucl. Phys. A 645, 145–174 (1999).

    Article  ADS  Google Scholar 

  22. Guler, N. et al. Precise determination of the deuteron spin structure at low to moderate Q2 with CLAS and extraction of the neutron contribution. Phys. Rev. C 92, 055201 (2015).

    Article  ADS  Google Scholar 

  23. Schwinger, J. S. Source theory viewpoints in deep inelastic scattering. Proc. Natl Acad. Sci. USA 72, 1–5 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  24. Adhikari, K. P. et al. Measurement of the Q2 dependence of the deuteron spin structure function g1 and its moments at low Q2 with CLAS. Phys. Rev. Lett. 120, 062501 (2018).

    Article  ADS  Google Scholar 

  25. Bass, S. D., Skurzok, M. & Moskal, P. Updating spin-dependent Regge intercepts. Phys. Rev. C 98, 025209 (2018).

    Article  ADS  Google Scholar 

  26. Gerasimov, S. B. A sum rule for magnetic moments and the damping of the nucleon magnetic moment in nuclei. Sov. J. Nucl. Phys. 2, 430–433 (1966).

    Google Scholar 

  27. Drell, S. D. & Hearn, A. C. Exact sum rule for nucleon magnetic moments. Phys. Rev. Lett. 16, 908–911 (1966).

    Article  ADS  Google Scholar 

  28. Helbing, K. The Gerasimov–Drell–Hearn sum rule. Prog. Part. Nucl. Phys. 57, 405–469 (2006).

    Article  ADS  Google Scholar 

  29. Chambers, A. J. et al. Nucleon structure functions from operator product expansion on the lattice. Phys. Rev. Lett. 118, 242001 (2017).

    Article  ADS  Google Scholar 

  30. Burkhardt, H. & Cottingham, W. N. Sum rules for forward virtual Compton scattering. Ann. Phys. 56, 453–463 (1970).

    Article  ADS  Google Scholar 

  31. Ye, Z., Arrington, J., Hill, R. J. & Lee, G. Proton and neutron electromagnetic form factors and uncertainties. Phys. Lett. B 777, 8–15 (2018).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

All authors are members of The Jefferson Lab E97-110 Collaboration. We acknowledge the outstanding support of the Jefferson Lab Hall A technical staff and the Physics and Accelerator Divisions that made this work possible. We thank A. Deltuva, J. Golak, F. Hagelstein, H. Krebs, V. Lensky, U.-G. Meißner, V. Pascalutsa, G. Salmè, S. Scopetta and M. Vanderhaeghen for useful discussions and for sharing their calculations. We are grateful to V. Pascalutsa and M. Vanderhaeghen for suggesting a comparison of the data to the Schwinger relation. This material is based upon work supported by the United States Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177 and by the United States National Science Foundation under grant PHY-0099557.

Author information

Authors and Affiliations

Authors

Contributions

The members of the Jefferson Lab E97-110 Collaboration constructed and operated the experimental equipment used in this experiment. All authors contributed to the data collection, experiment design and commissioning, data processing, data analysis or Monte Carlo simulations. The following authors especially contributed to the main data analysis: J.P.C., A.D., C.P. and V.S.

Corresponding author

Correspondence to Alexandre Deur.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Mohammad Ahmed, Jan Friedrich and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sulkosky, V., Peng, C., Chen, Jp. et al. Measurement of the generalized spin polarizabilities of the neutron in the low-Q2 region. Nat. Phys. 17, 687–692 (2021). https://doi.org/10.1038/s41567-021-01245-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-021-01245-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing